×

zbMATH — the first resource for mathematics

Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. (English) Zbl 1231.37020
Summary: This paper presents the adaptive anti-synchronization of a class of chaotic complex nonlinear systems described by a united mathematical expression with fully uncertain parameters. Based on Lyapunov stability theory, an adaptive control scheme and adaptive laws of parameters are developed to anti-synchronize two chaotic complex systems. The anti-synchronization of two identical complex Lorenz systems and two different complex Chen and Lü systems are taken as two examples to verify the feasibility and effectiveness of the presented scheme.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34H10 Chaos control for problems involving ordinary differential equations
93C40 Adaptive control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fowler, A.C.; Gibbon, J.D.; McGuinness, M.J., The complex Lorenz equations, Physica D, 4, 139-163, (1982) · Zbl 1194.37039
[2] Mahmoud, G.M.; Bountis, T.; Mahmoud, E.E., Active control and global synchronization for complex Chen and Lü systems, Internat. J. bifur. chaos, 17, 4295-4308, (2007) · Zbl 1146.93372
[3] Mahmoud, G.M.; Mahmoud, E.E.; Ahmed, M.E., On the hyperchaotic complex Lü system, Nonlinear dyn., 58, 725-738, (2009) · Zbl 1183.70053
[4] Mahmoud, G.M.; Aly, S.A.; Al-Kashif, M.A., Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system, Nonlinear dyn., 51, 171-181, (2008) · Zbl 1170.70365
[5] Mahmoud, G.M.; Mahmoud, E.E., Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems, Nonlinear dyn., 61, 141-152, (2010) · Zbl 1204.93096
[6] Mahmoud, G.M.; Mahmoud, E.E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters, Nonlinear dyn., 62, 875-882, (2010) · Zbl 1215.93114
[7] Hu, J.; Chen, S.; Chen, L., Adaptive control for anti-synchronization of chua’s chaotic system, Phys. lett. A, 339, 455-460, (2005) · Zbl 1145.93366
[8] Kim, C.M.; Rim, S.; Kye, W.H.; Ryu, J.W.; Park, Y.J., Anti-synchronization of chaotic oscillators, Phys. lett. A, 320, 39-46, (2003) · Zbl 1098.37521
[9] Zhang, Y.; Sun, J., Chaotic synchronization and anti-synchronization based on suitable separation, Phys. lett. A, 330, 442-447, (2004) · Zbl 1209.37039
[10] Ho, M.C.; Hung, Y.C.; Chou, C.H., Phase and anti-phase synchronization of two chaotic systems by using active control, Phys. lett. A, 296, 43-48, (2002) · Zbl 1098.37529
[11] Li, G.H.; Zhou, S.P., Anti-synchronization in different chaotic systems, Chaos solitons fractals, 32, 516-520, (2007)
[12] Li, W.; Chen, X.; Shen, Z., Anti-synchronization of two different chaotic systems, Physica A, 387, 3747-3750, (2008)
[13] Al-Sawalha, M.M.; Noorani, M.S.M., Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun. nonlinear sci. numer. simul., 15, 1036-1047, (2010) · Zbl 1221.93123
[14] Mahmoud, G.M.; Al-Kashif, M.A.; Aly, S.A., Basic properties and chaotic synchronization of complex Lorenz system, Internat. J. modern. phys. C, 18, 253-265, (2007) · Zbl 1115.37035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.