zbMATH — the first resource for mathematics

Common fixed point theorems for \(c\)-distance in ordered cone metric spaces. (English) Zbl 1231.54028
Summary: Recently, Y. J. Cho, R. Saadati and S. H. Wang [Comput. Math. Appl. 61, No. 4, 1254–1260 (2011; Zbl 1217.54041)] introduced the concept of the \(c\)-distance in a cone metric space and established some fixed point theorems on \(c\)-distance. The aim of this paper is to extend and generalize the main results of [loc. cit.] and also show some examples to validate our main results.

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
Full Text: DOI
[1] Banach, S., Sur LES opérations dans LES ensembles abstraits et leurs applications aux équations intégrales, Fund. math., 3, 133-181, (1922) · JFM 48.0201.01
[2] Arvanitakis, A.D., A proof of the generalized Banach contraction conjecture, Proc. amer. math. soc., 131, 12, 3647-3656, (2003) · Zbl 1053.54047
[3] Boyd, D.W.; Wong, J.S.W., On nonlinear contractions, Proc. amer. math. soc., 20, 458-464, (1969) · Zbl 0175.44903
[4] Choudhury, B.S.; Das, K.P., A new contraction principle in Menger spaces, Acta math. sin., 24, 8, 1379-1386, (2008) · Zbl 1155.54026
[5] Merryfield, J.; Rothschild, B.; Stein, J.D., An application of ramsey’s theorem to the Banach contraction principle, Proc. amer. math. soc., 130, 4, 927-933, (2002) · Zbl 1001.47042
[6] Sintunavart, W.; Kumam, P., Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition, Appl. math. lett., 22, 1877-1881, (2009) · Zbl 1225.54028
[7] Sintunavart, W.; Kumam, P., Weak condition for generalized multi-valued \((f, \alpha, \beta)\)-weak contraction mappings, Appl. math. lett., 24, 460-465, (2011) · Zbl 1206.54064
[8] Sintunavart, W.; Kumam, P., Coincidence and common fixed points for generalized contraction multi-valued mappings, J. comput. anal. appl., 13, 2, 362-367, (2011) · Zbl 1221.47095
[9] Sintunavart, W.; Kumam, P., Gregus-type common fixed point theorems for tangential multivalued mappings of integral type in metric spaces, Int. J. math. math. sci., 2011, (2011), Article ID 923458, 12 pages · Zbl 1215.54026
[10] Sintunavart, W.; Kumam, P., Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type, J. inequal. appl., 2011, 3, (2011) · Zbl 1288.54044
[11] Suwannawit, J.; Petrot, N., Common fixed point theorems for hybrid generalized multivalued, Thai J. math., 9, 2, 411-421, (2011)
[12] Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proc. amer. math. soc., 136, 5, 1861-1869, (2008) · Zbl 1145.54026
[13] Huang, L.-G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. math. anal. appl., 332, 1468-1476, (2007) · Zbl 1118.54022
[14] Abbas, M.; Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric space, J. math. anal. appl., 341, 416-420, (2008) · Zbl 1147.54022
[15] Abbas, M.; Rhoades, B.E., Fixed and periodic point results in cone metric spaces, Appl. math. lett., 22, 511-515, (2009) · Zbl 1167.54014
[16] Azam, A.; Arshad, M., Common fixed points of generalized contractive maps in cone metric space, Bull. Iranian math. soc., 35, 2, 225-264, (2009) · Zbl 1201.47052
[17] Ilić, D.; Rakočević, V., Common fixed point for maps on cone metric space, J. math. anal. appl., 341, 876-882, (2008) · Zbl 1156.54023
[18] Ilić, D.; Rakočević, V., Quasi-contraction on a cone metric space, Appl. math. lett., 22, 728-731, (2009) · Zbl 1179.54060
[19] Wardowski, D., Endpoint and fixed points of set-valued contractions in cone metric spaces, Nonlinear anal., 71, 512-516, (2009) · Zbl 1169.54023
[20] Cho, Y.J.; Saadati, R.; Wang, S.H., Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. math. appl., 61, 1254-1260, (2011) · Zbl 1217.54041
[21] Jungck, G.; Radenović, S.; Radojević, S.; Rakočević, V., Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed point theory appl., (2009), Article ID 643840, 13 pages · Zbl 1190.54032
[22] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. japon., 44, 381-391, (1996) · Zbl 0897.54029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.