×

zbMATH — the first resource for mathematics

An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. (English) Zbl 1231.74498
Summary: The NURBS-based isogeometric analysis offers a seamless integration between the CAD and subsequent finite element analysis and has been shown to be very effective for wide classes of problems due to its accurate geometric description. However, similar to the moving least square or reproducing kernel meshfree shape functions, the NURBS basis functions generally are not interpolatory functions. In this work it is shown that the direct imposition of the inhomogeneous essential boundary conditions to the NURBS control points may lead to significant errors with deteriorated rates of convergence. Consequently an improved formulation for NURBS-based isogeometric analysis is proposed. This is fulfilled by employing a transformation method that relates the control variables to the collocated nodal values at the essential boundary. By using open knot vectors, the resulting NURBS basis functions associated with the interior control points vanish at the boundary. Thus unlike the meshfree approximation, the NURBS control points can be clearly partitioned into boundary and interior groups. Therefore the transformation method can be only applied to the boundary control points via invoking collocation of physical values at a set of boundary points. The NURBS approximation enhanced with transformed physical boundary variables is kinematically admissible and the essential boundary conditions can be enforced straightforwardly like the finite element method. Several potential and elasticity problems evince that much higher solution accuracy with optimal convergence rates can be achieved by the present improved formulation compared with the method with direct imposition of essential boundary conditions to control variables.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
Software:
ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. meth. appl. mech. eng., 194, 4135-4195, (2005) · Zbl 1151.74419
[2] Bazilevs, Y.; Hughes, T.J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. mech., 43, 143-150, (2008) · Zbl 1171.76043
[3] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. meth. appl. mech. eng., 196, 4853-4862, (2007) · Zbl 1173.76397
[4] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. meth. appl. mech. eng., 197, 173-201, (2007) · Zbl 1169.76352
[5] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378, (2008) · Zbl 1162.76355
[6] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. comput. phys., 229, 3402-3414, (2010) · Zbl 1290.76037
[7] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[8] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[9] Bazilevs, Y.; Gohean, J.R.; Hughes, T.J.R.; Moser, R.D.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput. meth. appl. mech. eng., 198, 3534-3550, (2009) · Zbl 1229.74096
[10] Hughes, T.J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. meth. appl. mech. eng., 197, 4104-4124, (2008) · Zbl 1194.74114
[11] Hughes, T.J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. meth. appl. mech. eng., 199, 301-313, (2010) · Zbl 1227.65029
[12] Zhang, Y.J.; Bazilevs, Y.; Goswami, S.; Bajaj, C.L.; Hughes, T.J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. meth. appl. mech. eng., 196, 2943-2959, (2007) · Zbl 1121.76076
[13] Cottrell, J.A.; Hughes, T.J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. meth. appl. mech. eng., 196, 4160-4183, (2007) · Zbl 1173.74407
[14] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. meth. appl. mech. eng., 195, 5257-5296, (2006) · Zbl 1119.74024
[15] Benson, D.J.; Bazilevs, Y.; Hsu, M.C.; Hughes, T.J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. meth. appl. mech. eng., 199, 276-289, (2010) · Zbl 1227.74107
[16] Gómez, H.; Calo, V.M.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. meth. appl. mech. eng., 197, 4333-4352, (2008) · Zbl 1194.74524
[17] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. meth. appl. mech. eng., 199, 374-382, (2010) · Zbl 1227.74068
[18] Lipton, S.; Evans, J.A.; Bazilevs, Y.; Elguedj, T.; Hughes, T.J.R., Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. meth. appl. mech. eng., 199, 357-373, (2010) · Zbl 1227.74112
[19] Kim, H.J.; Seo, Y.D.; Youn, S.K., Isogeometric analysis for trimmed CAD surfaces, Comput. meth. appl. mech. eng., 198, 2982-2995, (2010) · Zbl 1229.74131
[20] Lu, J., Circular element: isogeometric elements of smooth boundary, Comput. meth. appl. mech. eng., 198, 2391-2402, (2009) · Zbl 1229.74134
[21] Sevilla, R.; Fernandez-Mendez, S.; Huerta, A., NURBS-enhanced finite element method, Int. J. numer. meth. eng., 76, 56-83, (2008) · Zbl 1162.65389
[22] Shaw, A.; Roy, D., NURBS-based parametric mesh-free methods, Comput. meth. appl. mech. eng., 197, 1541-1567, (2008) · Zbl 1194.74538
[23] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines, Comput. meth. appl. mech. eng., 199, 229-263, (2010) · Zbl 1227.74123
[24] Döfel, M.R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. meth. appl. mech. eng., 199, 264-275, (2010) · Zbl 1227.74125
[25] Belytschko, T.; Kronggauz, Y.; Organ, D.; Fleming, M., Meshless methods: an overview and recent developments, Comput. meth. appl. mech. engrg., 139, 3-47, (1996) · Zbl 0891.73075
[26] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. meth. eng., 37, 229-256, (1994) · Zbl 0796.73077
[27] Chen, J.S.; Liu, W.K., Meshfree methods, Comput. meth. appl. mech. eng., 193, 3-6, (2004)
[28] Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. meth. appl. mech. eng., 139, 195-229, (1996)
[29] Li, S.; Liu, W.K., Meshfree particle methods, (2004), Springer-Verlag Berlin · Zbl 1073.65002
[30] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. meth. eng., 38, 655-1679, (1995) · Zbl 0840.73078
[31] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. meth. fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[32] Wang, H.P.; Wang, D., Efficient meshfree computation with fast treatment of essential boundary conditions for industrial applications, ASCE J. eng. mech., 135, 1147-1154, (2009)
[33] Lu, Y.Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. meth. appl. mech. eng., 113, 397-414, (1994) · Zbl 0847.73064
[34] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. meth. appl. mech. eng., 131, 133-145, (1996) · Zbl 0881.65098
[35] Chen, J.S.; Wang, H.P., New boundary condition treatments in meshless computation of contact problems, Comput. meth. appl. mech. eng., 187, 441-468, (2000) · Zbl 0980.74077
[36] Chen, J.S.; Wang, H.P.; Yoon, S.; You, Y., Some recent improvements in meshfree methods for the incompressible finite elasticity boundary value problems with contact, Comput. mech., 25, 137-156, (2000) · Zbl 0978.74085
[37] Kaljevic, I.; Saigal, S., An improved element free Galerkin formulation, Int. J. numer. meth. eng., 40, 2953-2974, (1997) · Zbl 0895.73079
[38] Gunther, F.; Liu, W.K., Implementation of boundary conditions for meshless methods, Comput. meth. appl. mech. eng., 163, 205-230, (1998) · Zbl 0963.76068
[39] Zhu, T.; Atluri, S.N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. mech., 21, 211-222, (1998) · Zbl 0947.74080
[40] Wagner, G.J.; Liu, W.K., Hierarchical enrichment for bridging scales and meshfree boundary conditions, Int. J. numer. meth. eng., 50, 507-524, (2001) · Zbl 1006.76073
[41] Huerta, A.; Fernández-Méndez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. numer. meth. eng., 48, 1015-1636, (2000) · Zbl 0976.74067
[42] Chen, J.S.; Han, W.M.; You, Y.; Meng, X.P., A reproducing kernel method with nodal interpolation property, Int. J. numer. meth. eng., 56, 935-960, (2003) · Zbl 1106.74424
[43] Fernandez-Mendez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. meth. appl. mech. eng., 193, 1257-1275, (2004) · Zbl 1060.74665
[44] Hu, S.M.; Li, Y.F.; Ju, T.; Zhu, X., Modifying the shape of NURBS surfaces with geometric constraints, Computer-aided design, 33, 903-912, (2001)
[45] Rogers, D.F., An introduction to NURBS with historical perspective, (2001), Academic Press
[46] Shi, Z., Computer aided geometry design & NURBS, (1994), Beihang Press Beijing
[47] Brujic, D.; Ristic, M.; Ainsworth, I., Measurement-based modification of NURBS surfaces, Computer-aided design, 34, 173-183, (2002)
[48] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (1970), McGraw New York · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.