Generalizations of the Navier-Stokes fluid from a new perspective. (English) Zbl 1231.76073

Summary: In this paper we study incompressible fluids described by constitutive equations from a different perspective, than that usually adopted, namely that of expressing kinematical quantities in terms of the stress. Such a representation is the appropriate way to express fluids like the classical Bingham fluid or fluids whose material moduli depend on the pressure. We consider models wherein the symmetric part of the velocity gradient is given by a “power-law” of the stress. This stress power-law model automatically satisfies the constraint of incompressibility without our having to introduce a Lagrange multiplier to enforce the constraint. The model also includes the classical incompressible Navier-Stokes model as a special subclass. We compare the stress power-law model with the classical power-law models and we show that the stress power-law model can, for certain parameter values, exhibit qualitatively different response characteristics than the classical power-law models and — on the other hand — it can be, for certain parameter values, used as a substitute for the classical power-law models. Using a stress power-law model we study several steady flow problems and obtain exact analytical solutions, and we argue that the possibility to obtain an exact analytical solution suggests, among others, that using these models provides an interesting alternative to the classical power-law models for which reasonable exact analytical solutions cannot be obtained. Finally, we discuss the issue of the choice of boundary conditions, and we show that the choice of boundary conditions has, at least for one of the problems that we study, a profound impact on the solvability of the boundary value problem.


76D05 Navier-Stokes equations for incompressible viscous fluids
76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
Full Text: DOI


[1] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, () · Zbl 0779.73004
[2] Truesdell, C.; Toupin, R.A., The classical field theories, ()
[3] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, (2004), Springer Berlin · Zbl 0779.73004
[4] Antman, S.S.; Marlow, R.S., Material constraints Lagrange multipliers and compatibility: applications to rod and shell theories, Arch. ration. mech. anal., 116, 3, 257-299, (1991) · Zbl 0769.73012
[5] Rajagopal, K.R.; Srinivasa, A.R., On the response of non-dissipative solids, Proc. R. soc. lond., ser. A, math. phys. eng. sci., 463, 2078, 357-367, (2007) · Zbl 1129.74010
[6] Rajagopal, K.R.; Srinivasa, A.R., On a class of non-dissipative materials that are not hyperelastic, Proc. R. soc. lond. ser. A math. phys. eng. sci., ISSN: 1364-5021, 465, 2102, 493-500, (2009) · Zbl 1186.74009
[7] ()
[8] Bridgman, P.W., The physics of high pressure, (1931), Macmillan New York · Zbl 0049.25606
[9] Oldroyd, J.G., A rational formulation of the equations of plastic flow for a Bingham solid, Math. proc. camb. philos. soc., 43, 01, 100-105, (1947) · Zbl 0029.32702
[10] Herschel, W.H.; Bulkley, R., Konsistenzmessungen von gummi-benzollösungen, Colloid. polym. sci., 39, 4, 291-300, (1926)
[11] Rajagopal, K., On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. models methods appl. sci., 17, 2, 215-252, (2007) · Zbl 1123.76066
[12] Rajagopal, K.R., On implicit constitutive theories, Appl. math. praha, 48, 4, 279-319, (2003) · Zbl 1099.74009
[13] Rajagopal, K.R.; Srinivasa, A.R., On thermomechanical restrictions of continua, Proc. R. soc. lond., ser. A, math. phys. eng. sci., 460, 2042, 631-651, (2004) · Zbl 1041.74002
[14] Málek, J.; Rajagopal, K.R., Mathematical issues concerning the navier – stokes equations and some of its generalizations, (), 371-459, Chapter 5 · Zbl 1095.35027
[15] Hagen, G.H.L., Über die bewegung des wassers in einen cylindrischen Röhren, Poggendorf’s annalen der physik und chemie, 423-442, (1839)
[16] Poiseuille, J.L.M., Sur le mouvement des liquides de nature différente dans LES tubes de très petits diamètres, Annales de chimie et physique, XXI, 76-110, (1847)
[17] Hagenbach, E., Über die bestimmung der Zähigkeit einer flüssigkeit durch den ausfluss aus Röhren, Poggendorf’s annalen der physik und chemie, 108, 385-426, (1860)
[18] Stokes, G.G., On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge phil. soc., 8, 287-341, (1845)
[19] Sutera, S.P.; Skalak, R., The history of Poiseuille law, Annu. rev. fluid mech., 25, 1-19, (1993)
[20] Taylor, G.I., Stability of a viscous liquid contained between two rotating cylinders, Philos. trans. R. soc., ser. A, math. phys. eng. sci., 223, 605-615, 289-343, (1923) · JFM 49.0607.01
[21] Chandrasekhar, S., The stability of viscous flow between rotating cylinders, Proc. R. soc. lond., ser. A, ISSN: 0962-8444, 246, 301-311, (1958) · Zbl 0082.18901
[22] Couette, M.M.A., Etudes sur le frottement des liquides, Annales des chimie et des physique, 21, 433-510, (1890) · JFM 22.0964.01
[23] Donnelly, R.J., Taylor – couette flow: the early days, Phys. today, ISSN: 0031-9228, 44, 11, 32-39, (1991)
[24] ()
[25] ()
[26] Berker, R., Intégration des équations du mouvement d’un fluide visqueus incompressible, (), 1-384
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.