×

Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities. (English) Zbl 1232.15006

The asymptotics when \(n\rightarrow \infty\) for \(n\)-dimensional Toeplitz, Hankel and Toeplitz+Hankel determinants whose symbols possess Fisher-Hartwig singularities are studied.
A symbol with Fisher-Hartwig singularities is a function \(f(z)\) on the unit circle such that
\(f(z) = e^{V(z)} z^{\sum_{j=0}^m \beta_j} \prod_{j=0}^m |z-z_j|^{2\alpha_j}g_{z_j,\beta_j}(z) z_j^{-\beta_j}\), \(z=e^{i\theta}\), \(\theta\in[0,2\pi]\), \(z_j=e^{i\theta_j}\), \(j=0,\dots,m\), \(0=\theta_0< \theta_1<\dots <\theta_m<2\pi\), \(g_{z_j,\beta_j}(z)=e^{i\pi\beta_j}\) if \(0\leq \mathrm{arg} z\leq \theta _j\), and \(e^{-i\pi\beta_j}\) if \(\theta_j\leq arg z\leq 2\pi\), \(\mathrm{Re}\alpha_j>-\frac{1}{2}\), \(\beta_j\in\mathbb{C}\), \(V(z)\) is a sufficiently smooth function on the unit circle.
Let \(f_j=\frac{1}{2\pi}\int_0^{2\pi}f(e^{i\theta})e^{-ij\theta}d\theta\) be the Fourier coefficients of \(f\). Then the Toeplitz determinant with the symbol \(f\) is defined as \(D_n(f)=\det(f_{j-k})_{j,k=0}^{n-1}\), the Hankel determinant with the symbol \(f\) is defined as \(D_n(f)=\det(f_{j+k+1})_{j,k=0}^{n-1}\), and determinant of types \(D_n(f)=\det(f_{j-k}+f_{j+k})_{j,k=0}^{n-1}\), \(D_n(f)=\det(f_{j-k}-f_{j+k+2})_{j,k=0}^{n-1}\), \(D_n(f)=\det(f_{j-k}\pm f_{j+k+1})_{j,k=0}^{n-1}\) are called the Toeplitz+Hankel determinant.
The determinants of such types corresponding to symbols with Fisher-Hartwig singularities have applications in statistical mechanics [M. E. Fisher and R. E. Hartwig, “Toeplitz determinants: some applications, theorems, and conjectures”, Adv. Chem. Phys. 15, 333–353 (1969)], in random matrix theory [M. L. Mehta, Random matrices. Rev. and enlarged 2. ed. Boston, MA: Academic Press, Inc. (1991; Zbl 0780.60014)], and even in number theory [É. Brézin (ed.) et al., Application of random matrices in physics. NATO Science Series II: Mathematics, Physics and Chemistry 221. Dordrecht: Springer. (2006; Zbl 1120.82001)].
The first formula for the asymptotics of Toeplitz determinants in the case \(f\in L_1(S^1)\) was obtained by G. Szegö, [“On certain Hermitian forms associated with the Fourier series of a positive function. Meddel. Lunds Univ. Mat. Sem. Suppl.-band M. Riesz, 228–238 (1952; Zbl 0048.04203)]. The situation when \(f\) has a Fisher-Hartwig singularity was considered by many authors: Widom (the case \(\mathrm{Re}\alpha_j>-\frac{1}{2}\), \(\beta_j=0\)) [H. Widom, “Toeplitz determinants with singular generating functions”, Am. J. Math. 95, 333–383 (1973; Zbl 0275.45006)], E. Basor (the case \(\mathrm{Re}\alpha_j>-\frac{1}{2}\), \(\mathrm{Re} \beta_j=0\)) [“Asymptotic formulas for Toeplitz determinants”, Trans. Am. Math. Soc. 239, 33–65 (1978; Zbl 0409.47018)], A. Böttcher and B. Silbermann (the case \(|\mathrm{Re}\alpha_j|<\frac{1}{2}\), \(|\mathrm{Re} \beta_j|<\frac{1}{2}\)) [“Toeplitz matrices and determinants with Fisher-Hartwig symbols”, J. Funct. Anal. 63, 178–214 (1985; Zbl 0592.47016)], T. Ehrhardt (the case \(\mathrm{Re}\alpha_j>-\frac{1}{2}\), \(\max_{jk}|\mathrm{Re}\beta_j-\beta_k|<1\)) [“A status report on the asymptotic behavior of Toeplitz determinants with Fisher-Hartwig singularities”, Basel: Birkhäuser. Oper. Theory, Adv. Appl. 124, 217–241 (2001; Zbl 0993.47028)]. Ehrhardt’s theorem is presented in the paper (Theorem 1.1).
The first main result of the paper under review is the formula for the asymptotics of the Hankel determinants in the case \(\mathrm{Re}\alpha_j>-\frac{1}{2}\), \(\beta_j\in\mathbb{C}\) (Theorem 1.13).
The second main result (Theorem 1.20) is the asymptotics for the Hankel determinants of Hankel determinants, whose symbols \(w(x)\) satisfy the following condition.
\(w(x)=e^{U(x)}\prod_{j=0}^{r+1}|x-\lambda_j|^{2\alpha_j}\omega_j(x)\), \(x\in[-1,1]\), \(1=\lambda_0>\lambda_1>\dots>\lambda_{r+1}=1\), \(\beta_0=\beta_{r+1}=0\), \(\mathrm{Re}\alpha_j>-\frac{1}{2}\), \(\mathrm{Re}\beta_j\in(-\frac{1}{2},\frac{1}{2})\), \(\omega_j(x)=e^{i\pi\beta_j)}\) if \(\mathrm{Re}x\leq\lambda_j\), and \(\omega_j(x)=e^{-i\pi\beta_j)}\) if \(\mathrm{Re}x>\lambda_j,\) \(U(x)\) is a sufficiently smooth function.
Finally the asymptotics for the Toeplitz+Hankel determinants are obtained (Theorem 1.25). This theorem is proved for a symbol \(f(z)\) which possesses Fisher-Hartwig singularities, such that \(\theta_{r+1}=\pi\), \(\mathrm{Re}\beta_j\in (-\frac{1}{2},\frac{1}{2})\), \(j=1,\dots,r\), \(\beta_0=\beta_{r+1}=0\).
An important role in the paper is played by an analysis of the related system of orthogonal polynomials on the unit circle using the Riemann-Hilbert approach.

MSC:

15A15 Determinants, permanents, traces, other special matrix functions
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
15B52 Random matrices (algebraic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Baik, P. Deift, and K. Johansson, ”On the distribution of the length of the longest increasing subsequence of random permutations,” J. Amer. Math. Soc., vol. 12, iss. 4, pp. 1119-1178, 1999. · Zbl 0932.05001
[2] J. Baik and E. M. Rains, ”Algebraic aspects of increasing subsequences,” Duke Math. J., vol. 109, iss. 1, pp. 1-65, 2001. · Zbl 1007.05096
[3] E. W. Barnes, ”The theory of the \(G\)-function,” Quart. J. Pure and Appl. Math., vol. 31, pp. 264-313, 1900. · JFM 30.0389.02
[4] E. Basor, ”Asymptotic formulas for Toeplitz determinants,” Trans. Amer. Math. Soc., vol. 239, pp. 33-65, 1978. · Zbl 0409.47018
[5] E. L. Basor, ”A localization theorem for Toeplitz determinants,” Indiana Univ. Math. J., vol. 28, iss. 6, pp. 975-983, 1979. · Zbl 0396.47018
[6] E. L. Basor and T. Ehrhardt, ”Some identities for determinants of structured matrices. Special issue on structured and infinite systems of linear equations,” Linear Algebra Appl., vol. 343/344, pp. 5-19, 2002. · Zbl 0994.15008
[7] E. L. Basor and T. Ehrhardt, ”Asymptotic formulas for the determinants of symmetric Toeplitz plus Hankel matrices,” in Toeplitz Matrices and Singular Integral Equations, Basel: Birkhäuser, 2002, vol. 135, pp. 61-90. · Zbl 1025.15011
[8] <a href=’http://dx.doi.org/10.1002/1522-2616(200108)228:13.3.CO;2-5\(^{\prime}\) title=’Go to document’> E. L. Basor and T. Ehrhardt, ”Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices,” Math. Nachr., vol. 228, pp. 5-45, 2001. · Zbl 1047.47020
[9] E. L. Basor and T. Ehrhardt, ”Determinant computations for some classes of Toeplitz-Hankel matrices,” Oper. Matrices, vol. 3, iss. 2, pp. 167-186, 2009. · Zbl 1198.47042
[10] E. L. Basor and C. A. Tracy, ”The Fisher-Hartwig conjecture and generalizations,” Phys. A, vol. 177, iss. 1-3, pp. 167-173, 1991.
[11] E. Bateman, Higher Transcendental Functions, New York: McGraw-Hill, 1953.
[12] A. Böttcher and B. Silbermann, ”Toeplitz matrices and determinants with Fisher-Hartwig symbols,” J. Funct. Anal., vol. 63, iss. 2, pp. 178-214, 1985. · Zbl 0592.47016
[13] A. Böttcher and B. Silbermann, ”The asymptotic behavior of Toeplitz determinants for generating functions with zeros of integral orders,” Math. Nachr., vol. 102, pp. 79-105, 1981. · Zbl 0479.47025
[14] A. Böttcher and B. Silbermann, ”Toeplitz operators and determinants generated by symbols with one Fisher-Hartwig singularity,” Math. Nachr., vol. 127, pp. 95-123, 1986. · Zbl 0613.47024
[15] H. M. Bui and J. P. Keating, ”On the mean values of \(L\)-functions in orthogonal and symplectic families,” Proc. Lond. Math. Soc., vol. 96, iss. 2, pp. 335-366, 2008. · Zbl 1220.11099
[16] P. Deift, A. Its, and I. Krasovsky, On asymptotics of a Toeplitz determinant with singularities. · Zbl 1326.35218
[17] P. Deift and X. Zhou, ”A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation,” Ann. of Math., vol. 137, iss. 2, pp. 295-368, 1993. · Zbl 0771.35042
[18] <a href=’http://dx.doi.org/10.1002/(SICI)1097-0312(199912)52:123.3.CO;2-R’ title=’Go to document’> P. Deift, T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides, and X. Zhou, ”Strong asymptotics of orthogonal polynomials with respect to exponential weights,” Comm. Pure Appl. Math., vol. 52, iss. 12, pp. 1491-1552, 1999. · Zbl 1026.42024
[19] P. Deift, ”Integrable operators,” in Differential Operators and Spectral Theory, Providence, RI: Amer. Math. Soc., 1999, vol. 189, pp. 69-84. · Zbl 0920.35105
[20] T. Ehrhardt and B. Silbermann, ”Toeplitz determinants with one Fisher-Hartwig singularity,” J. Funct. Anal., vol. 148, iss. 1, pp. 229-256, 1997. · Zbl 0909.47019
[21] T. Ehrhardt, ”A status report on the asymptotic behavior of Toeplitz determinants with Fisher-Hartwig singularities,” in Recent Advances in Operator Theory, Basel: Birkhäuser, 2001, vol. 124, pp. 217-241. · Zbl 0993.47028
[22] F. Franchini and A. G. Abanov, ”Asymptotics of Toeplitz determinants and the emptiness formation probability for the \(XY\) spin chain,” J. Phys. A, vol. 38, iss. 23, pp. 5069-5095, 2005. · Zbl 1256.82004
[23] M. E. Fischer and R. E. Hartwig, ”Toeplitz determinants: Some applications, theorems, and conjectures,” Advan. Chem. Phys., vol. 15, pp. 333-353, 1968.
[24] A. S. Fokas, A. R. Its, and A. V. Kitaev, ”The isomonodromy approach to matrix models in \(2\)D quantum gravity,” Comm. Math. Phys., vol. 147, iss. 2, pp. 395-430, 1992. · Zbl 0760.35051
[25] P. J. Forrester and N. E. Frankel, ”Applications and generalizations of Fisher-Hartwig asymptotics,” J. Math. Phys., vol. 45, iss. 5, pp. 2003-2028, 2004. · Zbl 1071.82014
[26] J. S. Geronimo, ”Szeg\Ho’s theorem for Hankel determinants,” J. Math. Phys., vol. 20, iss. 3, pp. 484-491, 1979. · Zbl 0432.33008
[27] S. M. Gonek, C. P. Hughes, and J. P. Keating, ”A hybrid Euler-Hadamard product for the Riemann zeta function,” Duke Math. J., vol. 136, iss. 3, pp. 507-549, 2007. · Zbl 1171.11049
[28] A. Its and I. Krasovsky, ”Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump,” in Integrable Systems and Random Matrices, Providence, RI: Amer. Math. Soc., 2008, vol. 458, pp. 215-247. · Zbl 1163.15027
[29] K. Johansson, ”On random matrices from the compact classical groups,” Ann. of Math., vol. 145, iss. 3, pp. 519-545, 1997. · Zbl 0883.60010
[30] J. P. Keating, ”Applications of random matrices in physics,” in Proceedings of the NATO Adv. Study Inst., New York: Springer-Verlag, 2006, vol. 221, p. x.
[31] J. P. Keating and F. Mezzadri, ”Random matrix theory and entanglement in quantum spin chains,” Comm. Math. Phys., vol. 252, iss. 1-3, pp. 543-579, 2004. · Zbl 1124.82009
[32] I. V. Krasovsky, ”Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant,” Duke Math. J., vol. 139, iss. 3, pp. 581-619, 2007. · Zbl 1173.15012
[33] A. B. J. Kuijlaars, K. T. -R. McLaughlin, W. Van Assche, and M. Vanlessen, ”The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on \([-1,1]\),” Adv. Math., vol. 188, iss. 2, pp. 337-398, 2004. · Zbl 1082.42017
[34] A. Lenard, ”Momentum distribution in the ground state of the one-dimensional system of impenetrable Bosons,” J. Mathematical Phys., vol. 5, pp. 930-943, 1964.
[35] A. Mart’inez-Finkelshtein, K. T. -R. McLaughlin, and E. B. Saff, ”Szeg\Ho orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics,” Constr. Approx., vol. 24, iss. 3, pp. 319-363, 2006. · Zbl 1135.42326
[36] A. Mart’inez-Finkelshtein, K. T. -R. McLaughlin, and E. B. Saff, ”Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle,” Int. Math. Res. Not., vol. 2006, p. I, 2006. · Zbl 1135.42325
[37] A. A. Ovchinnikov, ”Fisher-Hartwig conjecture and the correlators in the impenetrable Bose gas,” Phys. Lett. A, vol. 373, iss. 3, pp. 305-307, 2009. · Zbl 1227.82070
[38] B. Simon, Orthogonal Polynomials on the Unit Circle, Providence, RI: Amer. Math. Soc., 2005. · Zbl 1082.42020
[39] G. Szegö, Orthogonal Polynomials, Providence, R.I.: Amer. Math. Soc., 1959, vol. 23. · Zbl 0089.27501
[40] H. Weyl, The Classical Groups, Princeton, NJ: Princeton Univ. Press, 1997. · Zbl 1024.20501
[41] E. Whittaker and G. Watson, A Course of Modern Analysis, Cambridge: Cambridge University Press, 1996. · Zbl 0951.30002
[42] H. Widom, ”Toeplitz determinants with singular generating functions,” Amer. J. Math., vol. 95, pp. 333-383, 1973. · Zbl 0275.45006
[43] H. Widom, ”The strong Szeg\Ho limit theorem for circular arcs,” Indiana Univ. Math. J., vol. 21, pp. 277-283, 1971/1972. · Zbl 0213.34903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.