On the time continuity of entropy solutions. (English) Zbl 1232.35029

Summary: We show that any entropy solution \(u\) of a convection diffusion equation \({\partial_t u + {\mathrm {div}} F(u)-\Delta\phi(u)=b}\) in \(\Omega \times (0, T)\) belongs to \({C([0,T),L^1_{\mathrm {loc}}({\Omega}))}\). The proof does not use the uniqueness of the solution.


35B65 Smoothness and regularity of solutions to PDEs
35K65 Degenerate parabolic equations
35L65 Hyperbolic conservation laws
Full Text: DOI arXiv


[1] Alt H.W., Luckhaus S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983) · Zbl 0508.35046
[2] Blanchard D., Porretta A.: Stefan problems with nonlinear diffusion and convection. J. Differential Equations 210(2), 383–428 (2005) · Zbl 1075.35112
[3] Cancès C., Gallouët T., Porretta A.: Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Bound. 11(2), 239–258 (2009) · Zbl 1178.35196
[4] Carrillo J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147(4), 269–361 (1999) · Zbl 0935.35056
[5] Carrillo J., Wittbold P.: Renormalized entropy solutions of scalar conservation laws with boundary condition. J. Differential Equations 185(1), 137–160 (2002) · Zbl 1026.35069
[6] Chen G., Rascle M.: Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal. 153(3), 205–220 (2000) · Zbl 0962.35122
[7] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J., 1964. · Zbl 0144.34903
[8] Gagneux G., Madaune-Tort M.: Unicité des solutions faibles d’équations de diffusion-convection. C. R. Acad. Sci. Paris Sér. I Math. 318(10), 919–924 (1994) · Zbl 0826.35057
[9] Kružkov S. N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)
[10] J. Málek, J. Nečas, M. Rokyta, and M. Ružička. Weak and measure-valued solutions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996.
[11] Otto F.: L 1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differential Equations 131(1), 20–38 (1996) · Zbl 0862.35078
[12] Yu. Panov E.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2(4), 885–908 (2005) · Zbl 1145.35429
[13] M. Pierre. Personal discussion.
[14] J. Smoller. Shock waves and reaction-diffusion equations, volume 258 of Fundamental Principles of Mathematical Sciences. Springer-Verlag, New York, second edition, 1994.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.