Asymptotic integration of Navier-Stokes equations with potential forces. II: An explicit Poincaré-Dulac normal form. (English) Zbl 1232.35115

Summary: We study the incompressible Navier-Stokes equations with potential body forces on the three-dimensional torus. We show that the normalization introduced in the paper [the first and the third author, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4, 1–47 (1987; Zbl 0635.35075)] produces a Poincaré-Dulac normal form which is obtained by an explicit change of variable. This change is the formal power series expansion of the inverse of the normalization map. Each homogeneous term of a finite degree in the series is proved to be well-defined in appropriate Sobolev spaces and is estimated recursively by using a family of homogeneous gauges which is suitable for estimating homogeneous polynomials in infinite dimensional spaces.


35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids


Zbl 0635.35075
Full Text: DOI


[1] Arnolʼd, V.I., Geometrical methods in the theory of ordinary differential equations, Grundlehren math. wiss., vol. 250, (1988), Springer-Verlag New York, translated from the Russian by Joseph Szücs [József M. Szűcs]
[2] Brjuno, A.D., Analytic form of differential equations. I, II, Tr. mosk. mat. obs., Tr. mosk. mat. obs., 26, 199-239, (1972)
[3] Constantin, P.; Foias, C., Navier-Stokes equations, Chicago lectures math., (1988), University of Chicago Press Chicago, IL · Zbl 0687.35071
[4] Foias, C.; Hoang, L.; Nicolaenko, B., On the helicity in 3D-periodic Navier-Stokes equations. I. the non-statistical case, Proc. lond. math. soc. (3), 94, 1, 53-90, (2007) · Zbl 1109.76015
[5] Foias, C.; Hoang, L.; Olson, E.; Ziane, M., On the solutions to the normal form of the Navier-Stokes equations, Indiana univ. math. J., 55, 2, 631-686, (2006) · Zbl 1246.76019
[6] Foias, C.; Hoang, L.; Olson, E.; Ziane, M., The normal form of the Navier-Stokes equations in suitable normed spaces, Ann. inst. H. Poincaré anal. non linéaire, 26, 5, 1635-1673, (2009) · Zbl 1179.35212
[7] Foias, C.; Saut, J.-C., Asymptotic behavior, as \(t \rightarrow + \infty\), of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana univ. math. J., 33, 3, 459-477, (1984) · Zbl 0565.35087
[8] Foias, C.; Saut, J.-C., Linearization and normal form of the Navier-Stokes equations with potential forces, Ann. inst. H. Poincaré anal. non linéaire, 4, 1, 1-47, (1987) · Zbl 0635.35075
[9] Foias, C.; Saut, J.-C., Asymptotic integration of Navier-Stokes equations with potential forces. I, Indiana univ. math. J., 40, 1, 305-320, (1991) · Zbl 0739.35066
[10] Hille, E., Functional analysis and semi-groups, Amer. math. soc. colloq. publ., vol. 31, (1948), American Mathematical Society New York · Zbl 0033.06501
[11] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, Math. appl., vol. 2, (1969), Gordon and Breach Science Publishers New York, translated from the Russian by Richard A. Silverman and John Chu · Zbl 0184.52603
[12] Leray, J., Etude de diverse equations integrales non lineares et de quelques problemes que pose lʼhydrodynamique, J. math. pures appl., 12, 1-82, (1933) · Zbl 0006.16702
[13] Leray, J., Essai sur LES mouvements plans dʼun liquide visqueux que limitent des parois, J. math. pures appl., 13, 331-418, (1934) · JFM 60.0727.01
[14] Leray, J., Sur le mouvement dʼun liquide visqueux emplissant lʼespace, Acta math., 63, 1, 193-248, (1934) · JFM 60.0726.05
[15] Minea, G., Investigation of the foias-saut normalization in the finite-dimensional case, J. dynam. differential equations, 10, 1, 189-207, (1998) · Zbl 0970.34045
[16] Sell, G.R.; You, Y., Dynamics of evolutionary equations, Appl. math. sci., vol. 143, (2002), Springer-Verlag New York · Zbl 1254.37002
[17] Temam, R., Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF regional conf. ser. in appl. math., vol. 66, (1995), Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0833.35110
[18] Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, Appl. math. sci., vol. 68, (1997), Springer-Verlag New York · Zbl 0871.35001
[19] Temam, R., Navier-Stokes equations: theory and numerical analysis, (2001), AMS Chelsea Publishing Providence, RI, reprint of the 1984 edition · Zbl 0981.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.