zbMATH — the first resource for mathematics

Two-dimensional quaternion wavelet transform. (English) Zbl 1232.65192
Summary: We introduce the continuous quaternion wavelet transform (CQWT). We express the admissibility condition in terms of the (right-sided) quaternion Fourier transform. We show that its fundamental properties, such as inner product, norm relation, and inversion formula, can be established whenever the quaternion wavelets satisfy a particular admissibility condition. We present several examples of the CQWT. As an application we derive a Heisenberg type uncertainty principle for these extended wavelets.

65T50 Numerical methods for discrete and fast Fourier transforms
65T60 Numerical methods for wavelets
Full Text: DOI
[1] T.A Ell, Quaternionic-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in: Proceedings of 32nd IEEE Conference on Decision and Control, pp. 148-1841, San Antonio, TX, 1993.
[2] Pei, S.C.; Ding, J.J.; Chang, J.H., Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT, IEEE trans. signal process, 49, 11, 2783-2797, (2001) · Zbl 1369.65190
[3] Antoine, J.P.; Murenzi, R., Two-dimensional directional wavelet and the scale-angle representation, Signal process., 52, 3, 259-281, (1996) · Zbl 0875.94074
[4] Antoine, J.P.; Vandergheynst, P., Two-dimensional directional wavelet in imaging processing, Int. J. imag. syst. technol., 7, 3, 152-165, (1996)
[5] Gröchenig, K., Foundation of time-frequency analysis, (2001), Birkhäuser Boston
[6] Traversoni, L., Imaging analysis using quaternion wavelet, in geometric algebra with applications, ()
[7] Hitzer, E., Quaternion Fourier transform on quaternion fields and generalizations, Adv. appl. Clifford algebr., 17, 3, 497-517, (2007) · Zbl 1143.42006
[8] Hitzer, E.; Mawardi, B., Clifford Fourier transform on multivector fields and uncertainty principle for dimensions n=2 (mod 4) and n=3 (mod 4), Adv. appl. Clifford algebr., 18, 3-4, 715-736, (2008) · Zbl 1177.15029
[9] Brackx, F.; Delange, R.; Sommen, F., Clifford – hermite wavelets in Euclidean space, J. Fourier anal. appl., 8, 3, 299-310, (2000) · Zbl 0961.42021
[10] Brackx, F.; Sommen, F., Benchmarking of three-dimensional Clifford wavelet functions, Complex variables: theory and applications, 47, 7, 577-588, (2002) · Zbl 1041.42026
[11] Bayro-Corrochano, E., The theory and use of the quaternion wavelet transform, J. math. imag. vision, 24, 1, 19-35, (2006)
[12] Zhou, J.; Xu, Y.; Yang, X., Quaternion wavelet phase based stereo matching for uncalibrated images, Pattern recogn. lett., 28, 12, 1509-1522, (2007)
[13] Mallat, S., A wavelet tour of signal processing, (1999), Academic Press San Diego, CA · Zbl 0998.94510
[14] Mawardi, B.; Hitzer, E.; Hayashi, A.; Ashino, R., An uncertainty principle for quaternion Fourier transform, Comput. math. appl., 56, 9, 2411-2417, (2008)
[15] Mawardi, B.; Hitzer, E.; Ashino, R.; Vaillancourt, R., Windowed Fourier transform of two-dimensional quaternionic signals, App. math. comput., 216, 8, 2366-2379, (2010) · Zbl 1196.42009
[16] Mawardi, B.; Adji, S.; Zhao, J., Clifford algebra-valued wavelet transform on multivector fields, Adv. appl. Clifford algebr., 21, 1, 13-30, (2011) · Zbl 1217.15032
[17] Mawardi, B.; Hitzer, E., Clifford algebra cl3,0-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets, Int. J. wavelets multiresolut. inf. process., 5, 6, 997-1019, (2007) · Zbl 1197.42019
[18] Debnath, L., Wavelet transforms and their applications, (2002), Birkhäuser Boston · Zbl 1019.94003
[19] He, J.X., Continuous wavelet transform on the space \(L^2(\mathbb{R}, \mathbb{H} \text{;} \mathit{dx})\), Appl. math. lett., 17, 1, 111-121, (2001)
[20] Weyl, H., The theory of groups and quantum mechanics, (1950), Dover New York · Zbl 0041.25401
[21] Zhao, J.; Peng, L., Quaternion-valued admissible wavelets associated with the 2-dimensional Euclidean group with dilations, J. nat. geom., 20, 1, 21-32, (2001) · Zbl 1020.42025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.