×

Projective synchronization of a class of delayed chaotic systems via impulsive control. (English) Zbl 1233.34017

Summary: The authors study the projective synchronization of a class of delayed chaotic systems. The drive-response system can be synchronized to within a desired scaling factor via impulsive control. Some sufficient conditions are derived by the stability analysis of the impulsive functional differential equations. An illustrative example is provided to show the effectiveness and feasibility of the proposed method and results.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
37B25 Stability of topological dynamical systems
34H10 Chaos control for problems involving ordinary differential equations
49N25 Impulsive optimal control problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.L.; Zhou, C.S., Phys. rep., 366, 1, (2002)
[2] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 64, 821, (1990)
[3] Carroll, T.L.; Heagy, J.F.; Pecora, L.M., Phys. rev. E, 54, 4676, (1996)
[4] Rosenblum, M.; Pikovsky, A.; Kurtz, J., Phys. rev. lett., 76, 1804, (1996)
[5] Pikovsky, A.S.; Rosenblum, M.G.; Osipov, G.V.; Kurths, J., Physica D, 104, 219, (1997)
[6] Rosenblum, M.; Pikovsky, A.; Kurtz, J., Phys. rev. lett., 78, 4193, (1997)
[7] Morgul, O.; Solak, E., Phys. rev. E, 54, 4803, (1996)
[8] Morgul, O.; Solak, E., Int. J. bifur. chaos, 7, 1307, (1997)
[9] Mainieri, R.; Rehacek, J., Phys. rev. lett., 82, 3042, (1999)
[10] Xu, D., Phys. rev. E, 63, 027201, (2001)
[11] Xu, D.; Liu, Z., Int. J. bifur. chaos, 12, 1395, (2002)
[12] Xu, D.; Ong, W.L.; Li, Z., Phys. lett. A, 305, 167, (2002)
[13] Wang, B.; Bu, S., Int. J. modern phys. B, 16, 2415, (2004)
[14] Yu, H.; Peng, J.; Liu, Y., Int. J. bifur. chaos, 16, 1049, (2006)
[15] Hu, M.; Xu, Z.; Zhang, R.; Hu, A., Phys. lett. A, 365, 315, (2007)
[16] Hu, M.; Yang, Y.; Xu, Z., Phys. lett. A, 372, 3228, (2008)
[17] Park, J.H., J. comput. appl. math., 213, 288, (2008)
[18] Tang, Y.; Fang, J., Phys. lett. A, 372, 1816, (2008)
[19] Chen, H.; Liu, J., IEEE J. quantum electron., 36, 27, (2000)
[20] Choi, M.Y.; Kim, H.J.; Kim, D.; Hong, H., Phys. rev. E, 61, 371, (2000)
[21] Yalcin, M.E.; Suykens, J.A.K.; Vandewalle, J., Int. J. bifur. chaos, 11, 1707, (2001)
[22] Cao, J.; Lu, J., Chaos, 16, 013133, (2006)
[23] Zhou, S.; Li, H.; Wu, Z., Phys. rev. E, 75, 037203, (2007)
[24] Chen, G.; Yu, X., IEEE trans. circ. syst.-I, 46, 767, (1999)
[25] Cao, J.; Li, H.X.; Ho, D.W.C., Chaos solitons fractals, 23, 1285, (2005)
[26] Stojanovski, T.; Kocarev, L.; Parlitz, U., Phys. rev. E, 43, 782, (1996)
[27] Sun, J.; Zhang, Y.; Wu, Q., Phys. lett. A, 298, 153, (2002)
[28] Cuomo, K.M.; Oppenheim, A.V.; Strogatz, S.H., IEEE trans. circ. syst.-II, 40, 626, (1993)
[29] Li, C.; Liao, X.; Yang, X., Chaos, 15, 043103, (2005)
[30] Khadra, A.; Liu, X.; Shen, X., Automatica, 41, 1491, (2005)
[31] Yang, T.; Chua, L.O., IEEE trans. circ. syst.-I, 44, 976, (1997)
[32] Yang, Y.; Cao, J., Physica A, 386, 492, (2007)
[33] Luo, R., Chinese phys. lett. A, 372, 648, (2008)
[34] Tang, Y.; Wang, Z.; Fang, J., Chaos, 19, 013112, (2009)
[35] Hu, M.; Yang, Y.; Xu, Z.; Zhang, R.; Guo, L., Physica A, 381, 457, (2007)
[36] Zhao, Y.; Yang, Y., Phys. lett. A, 372, 7165, (2008)
[37] Yang, T., Impulsive control theory, (2001), Spinger-Verlag Berlin
[38] Feng, C.; Zhang, Y.; Wang, Y., Chin. phys. lett., 23, 1418, (2006)
[39] Feng, C.; Zhang, Y.; Sun, J.; Wang, Y., Chaos solitons fractals, 38, 743, (2008)
[40] Lu, W.; Chen, T., Physica D, 221, 118, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.