zbMATH — the first resource for mathematics

Efficient algorithms for basket default swap pricing with multivariate Archimedean copulas. (English) Zbl 1233.91296
Summary: We introduce a new importance sampling method for pricing basket default swaps employing exchangeable Archimedean copulas and nested Gumbel copulas. We establish more realistic dependence structures than existing copula models for credit risks in the underlying portfolio, and propose an appropriate density for importance sampling by analyzing multivariate Archimedean copulas. To justify efficiency and accuracy of the proposed algorithms, we present numerical examples and compare them with the crude Monte Carlo simulation, and finally show that our proposed estimators produce considerably smaller variances.

91G40 Credit risk
91G70 Statistical methods; risk measures
62H20 Measures of association (correlation, canonical correlation, etc.)
Full Text: DOI
[1] Andersen, L.; Sidenius, J.; Basu, S., All your hedges in one basket, Risk, November, 67-72, (2003)
[2] Chen, Z.; Glasserman, P., Fast pricing of basket default swaps, Operations research, 56, 2, 286-303, (2008) · Zbl 1167.91364
[3] Chiang, N.H.; Yueh, M.L.; Hsieh, M.H., An efficient algorithm for basket default swap valuation, Journal of derivatives, 15, 2, 8-19, (2007)
[4] Choe, G.H., Jang, H.J., 2010. The \(k\)th default time distribution and basket default swap pricing. Quantitative Finance (in print). · Zbl 1277.91167
[5] Feller, W., An introduction to probability theory and its applications: volume 2, (1971), Wiley New York · Zbl 0219.60003
[6] Frey, R.; McNeil, A.J., Dependent defaults in models of portfolio credit risk, Journal of risk, 6, 1, 59-92, (2003)
[7] Gregory, J.; Laurent, J.P., Basket default swaps, CDO’s and factor copulas, Journal of risk, 7, 4, 103-122, (2005)
[8] Hofert, M., Scherer, M., 2008. CDO pricing with nested Archimedean copulas. Working Paper. · Zbl 1213.91074
[9] Hull, J.C.; White, A., Valuation of a CDO and an \(n\)th to default CDS without Monte Carlo simulation, Journal of derivatives, 12, 2, 8-23, (2004)
[10] Joe, H., Multivariate models and dependence concepts, (1997), Chapman and Hall London · Zbl 0990.62517
[11] Joshi, M.S.; Kainth, D., Rapid and accurate development of prices and greeks for \(n\)th to default credit swaps in the Li model, Quantitative finance, 4, 3, 266-275, (2004) · Zbl 1405.91627
[12] Kimberling, C.H., A probability interpretation of complete monotonicity, Aequationes mathematicae, 10, 2, 152-164, (1974) · Zbl 0309.60012
[13] Li, D.X., On default correlation: a copula function approach, Journal of fixed income, 9, 4, 41-50, (2000)
[14] Marshall, A.W.; Olkin, I., Families of multivariate distributions, Journal of the American statistical association, 83, 403, 834-841, (1988) · Zbl 0683.62029
[15] Mashal, R., Naldi, M., 2002. Pricing multiname credit derivatives: heavy tailed hybrid approach. Working Paper.
[16] McNeil, A.J., Sampling nested Archimedean copulas, Journal of statistical computation and simulation, 78, 6, 567-581, (2008) · Zbl 1221.00061
[17] McNeil, A.J.; Frey, R.; Embrechts, P., Quantitative risk management, (2005), Princeton University Press · Zbl 1089.91037
[18] Nolan, J.P., Stable distributions—models for heavy tailed data, (2008), Springer
[19] Savu, C., Trede, M., 2006. Hierarchical Archimedean copulas. Technical Report. Institute of Econometrics, University of Munster. · Zbl 1270.91086
[20] Schönbucher, P.J., Schubert, D., 2001. Copula-dependent default risk in intensity models. Working Paper.
[21] Whelan, N., Sampling from Archimedean copulas, Quantitative finance, 4, 3, 339-352, (2004) · Zbl 1409.62108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.