×

zbMATH — the first resource for mathematics

Consensus of multi-agent linear dynamic systems via impulsive control protocols. (English) Zbl 1233.93005
Summary: In this article, we introduce impulsive control protocols for multi-agent linear dynamic systems. First, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the consensus of the multi-agent linear dynamic systems by the theory of impulsive systems. Furthermore it is discussed how to select the discrete instants and impulsive matrices. The case that the topologies of networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.

MSC:
93A14 Decentralized systems
93C05 Linear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
Software:
SeDuMi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bainov DD, Systems with Impulse Effect: Stability, Theory and Applications (1989)
[2] DOI: 10.1016/j.physleta.2008.05.077 · Zbl 1221.34075
[3] DOI: 10.1109/TAC.2004.834433 · Zbl 1365.90056
[4] DOI: 10.1109/TAC.2005.858635 · Zbl 1365.93322
[5] Godsil C, Algebraic Graph Theory (2001)
[6] DOI: 10.1016/j.chaos.2006.10.064 · Zbl 1142.93423
[7] DOI: 10.1080/00207720902750029 · Zbl 1172.93379
[8] DOI: 10.1016/j.automatica.2007.07.004 · Zbl 1283.93019
[9] DOI: 10.1109/TAC.2007.895860 · Zbl 1366.93437
[10] DOI: 10.1016/j.automatica.2006.02.013 · Zbl 1117.93300
[11] Horn RA, Matrix Analysis (1985) · Zbl 0576.15001
[12] Horn RA, Topics in Matrix Analysis (1991)
[13] DOI: 10.1109/TAC.2003.812781 · Zbl 1364.93514
[14] DOI: 10.1049/iet-cta.2008.0335
[15] DOI: 10.1049/iet-cta:20070375
[16] Lakshmikantham V, Theory of Impulsive Differential Equations (1989)
[17] DOI: 10.1016/j.physleta.2007.10.020 · Zbl 1217.05210
[18] DOI: 10.1016/j.physa.2007.08.040
[19] DOI: 10.1016/j.sysconle.2008.01.002 · Zbl 1140.93355
[20] DOI: 10.1080/00207720701748380 · Zbl 1283.93237
[21] DOI: 10.1109/TCSI.2005.851708 · Zbl 1374.82016
[22] DOI: 10.1080/00207720902755762 · Zbl 1291.93013
[23] DOI: 10.1109/JPROC.2006.887293 · Zbl 1376.68138
[24] DOI: 10.1109/TAC.2004.834113 · Zbl 1365.93301
[25] DOI: 10.1109/TCSI.2008.925357
[26] DOI: 10.1002/acs.916 · Zbl 1115.93338
[27] DOI: 10.1109/TAC.2008.924961 · Zbl 1367.93567
[28] DOI: 10.1109/TAC.2005.846556 · Zbl 1365.93302
[29] DOI: 10.1109/TAC.2004.829621 · Zbl 1365.93327
[30] DOI: 10.1016/j.sysconle.2007.08.009 · Zbl 1133.68412
[31] DOI: 10.1016/S0375-9601(02)00466-8 · Zbl 0995.37021
[32] DOI: 10.1109/TAC.2008.930184 · Zbl 1367.93411
[33] DOI: 10.1103/PhysRevLett.75.1226
[34] DOI: 10.1002/asjc.15
[35] Wu QJ, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 4 pp 1124– (2009)
[36] DOI: 10.1002/rnc.1144 · Zbl 1266.93013
[37] Yang T, Impulsive Control Theory (2001)
[38] Yu JJ, International Journal of Systems Science (2009)
[39] Zhang LP, Nonlinear Dynamics (2009)
[40] DOI: 10.1016/j.chaos.2007.06.012 · Zbl 1197.93149
[41] DOI: 10.1016/j.automatica.2008.11.005 · Zbl 1162.94431
[42] DOI: 10.1016/j.chaos.2007.06.061 · Zbl 1197.93109
[43] DOI: 10.1016/j.physa.2007.05.060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.