×

zbMATH — the first resource for mathematics

Adaptive stabilization of time-delay feedforward nonlinear systems. (English) Zbl 1233.93082
Summary: We consider the adaptive stabilization problem for feedforward nonlinear systems with time delays. An adaptive stabilizer is proposed. Our stabilizer takes a nested saturation feedback, and a set of switching logics is designed to tune online the saturation levels in a piecewise constant or switching manner. It has been shown that under our proposed control, all closed-loop states are bounded and asymptotic regulation is achieved.

MSC:
93D21 Adaptive or robust stabilization
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, T.S.; Huang, J., Disturbance attenuation of feedforward systems with dynamic uncertainty, IEEE transactions on automatic control, 53, 1711-1717, (2008) · Zbl 1367.93457
[2] Ge, S.S.; Hong, F.; Lee, T.H., Robust adaptive control of nonlinear systems with unknown time delays, Automatica, 41, 1181-1190, (2005) · Zbl 1078.93046
[3] Hespanha, J.P.; Liberzon, D.; Morse, A.S., Supervision of integral-input- to-state stabilizing controllers, Automatica, 38, 1327-1335, (2002) · Zbl 1172.93394
[4] Hespanha, J.P.; Liberzon, D.; Morse, A.S., Hysteresis-based switching algorithms for supervisory control of uncertain systems, Automatica, 39, 263-272, (2003) · Zbl 1011.93500
[5] Hua, C.C.; Wang, Q.G.; Guan, X.P., Adaptive tracking controller design of nonlinear systems with time delays and unknown dead-zone input, IEEE transactions on automatic control, 53, 1753-1759, (2008) · Zbl 1367.93310
[6] Jankovic, M.; Sepulchre, R.; Kokotovic, P.V., Constructive Lyapunov stabilization of nonlinear cascade systems, IEEE transactions on automatic control, 41, 1723-1735, (1996) · Zbl 0869.93039
[7] Jankovic, M.; Sepulchre, R.; Kokotovic, P.V., Global adaptive stabilization of cascade nonlinear systems, Automatica, 33, 263-268, (1997) · Zbl 0876.93082
[8] Jiao, X.H.; Shen, T., Adaptive feedback control of nonlinear time-delay systems: the lasalle – razumikhin-based approach, IEEE transactions on automatic control, 50, 1909-1913, (2005) · Zbl 1365.93185
[9] Kaliora, G.; Astolfi, A., Non-linear control of feedforward systems with bounded signals, IEEE transactions on automatic control, 49, 1975-1990, (2004) · Zbl 1365.93447
[10] Krishnamurthy, P.; Khorrami, F., Generalized state scaling and applications to feedback, feedforward nonlinear systems, IEEE transactions on automatic control, 52, 102-108, (2007) · Zbl 1366.93220
[11] Krstic, M., Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems, IEEE transactions on automatic control, 49, 1668-1682, (2004) · Zbl 1365.93214
[12] Krstic, M., Delay compensation for nonlinear, adaptive, and PDE systems, (2009), Birkhauser · Zbl 1181.93003
[13] Mazenc, F.; Mondie, S.; Francisco, R., Global asymptotic stabilization of feedforward systems with delay in the input, IEEE transactions on automatic control, 49, 844-850, (2004) · Zbl 1365.93409
[14] Mazenc, F.; Praly, L., Adding integrations, saturated control, and stabilization for feedforward systems, IEEE transactions on automatic control, 41, 1559-1578, (1996) · Zbl 0865.93049
[15] Miller, D.E.; Davison, E.J., An adaptive controller which provides an arbitrary good transient and steady-state response, IEEE transactions on automatic control, 36, 68-81, (1991) · Zbl 0725.93074
[16] Morse, A.S., Control using logic-based switching, (), 69-113 · Zbl 0787.93059
[17] Niculescu, S.L., Delay effects on stability: a robust control approach, (2001), Springer-Verlag London, UK
[18] Teel, A. (1992). Using saturation to stabilize a class of single-input partially linear composite systems. In Proceedings of the IFAC NOLCOS. Bordeaux, France(pp. 379-384).
[19] Teel, A., A nonlinear small gain theorem for analysis of control systems with saturation, IEEE transactions on automatic control, 41, 1256-1270, (1996) · Zbl 0863.93073
[20] Tsinias, J.; Tzamtzi, M.P., An explicit formula of bounded feedback stabilizers for feedforward systems, Systems and control letters, 43, 247-261, (2001) · Zbl 0974.93056
[21] Ye, X., Logic-based switching adaptive stabilization of feedforward nonlinear systems, IEEE transactions on automatic control, 44, 2174-2178, (1999) · Zbl 1136.93431
[22] Ye, X., Universal stabilization of feedforward nonlinear systems, Automatica, 39, 141-147, (2003) · Zbl 1010.93080
[23] Yoo, S.J.; Park, J.B.; Choi, Y.H., Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays, IEEE transactions on automatic control, 52, 2360-2365, (2007) · Zbl 1366.93593
[24] Zhang, T.P.; Ge, S.S., Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, Automatica, 44, 1895-1903, (2008) · Zbl 1149.93322
[25] Zhou, J.; Wen, C.; Wang, W., Adaptive backstepping control of uncertain systems with unknown input time-delay, Automatica, 45, 1415-1422, (2009) · Zbl 1166.93339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.