×

Fuzzy \(H_{\infty }\) filtering for nonlinear Markovian jump neutral systems. (English) Zbl 1233.93091

Summary: This article is concerned with the problem of \(H_{\infty }\) filter design for nonlinear Markovian jump neutral systems through the Takagi-Sugeno fuzzy model approach. By using a novel Markovian switched Lyapunov functional, a delay-dependent Bounded Real Lemma (BRL) is presented in terms of linear matrix inequalities. Based on the derived BRL, both normal \(H_{\infty }\) filters and non-fragile \(H_{\infty }\) filters are designed, which guarantee that the corresponding filtering error systems are stochastically stable with a specified \(H_{\infty }\) performance level. A numerical example is given to demonstrate the effectiveness of the proposed approach.

MSC:

93E11 Filtering in stochastic control theory
93E12 Identification in stochastic control theory
93C10 Nonlinear systems in control theory
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1109/TFUZZ.2006.877359 · Zbl 05452699
[2] DOI: 10.1016/j.ins.2006.10.006 · Zbl 1113.93078
[3] Basin MV, International Journal of Innovative Computing, Information and Control 4 pp 2889– (2008)
[4] DOI: 10.1080/00207720903045825 · Zbl 1301.93157
[5] DOI: 10.1007/s00034-008-9077-0 · Zbl 1173.93011
[6] Boukas EK, International Journal of Innovative Computing, Information and Control 1 pp 131– (2005)
[7] Chen B, International Journal of Innovative Computing, Information and Control 2 pp 293– (2006)
[8] DOI: 10.1016/j.automatica.2006.07.019 · Zbl 1140.93466
[9] DOI: 10.1109/9.478328 · Zbl 0843.93091
[10] de Souza, CE, Coutinho, DF and Barbosa, KA.HFiltering for a Class of Uncertain Markov Jump Nonlinear Systems. Proceedings of the 45th IEEE Conferences Decision and Control. December2006. pp.5531–5536. San Diego, CA, USA
[11] DOI: 10.1007/978-1-4612-0039-0
[12] DOI: 10.1016/j.amc.2008.08.046 · Zbl 1152.93052
[13] DOI: 10.1109/TAC.2006.887907 · Zbl 1366.34097
[14] DOI: 10.1109/TFUZZ.2008.921400 · Zbl 05516458
[15] DOI: 10.1016/j.chaos.2007.06.114 · Zbl 1197.34104
[16] DOI: 10.1080/0020772031000115489 · Zbl 1060.93077
[17] DOI: 10.1016/j.automatica.2004.05.007 · Zbl 1162.93403
[18] DOI: 10.1016/j.ins.2005.07.016 · Zbl 1116.93051
[19] DOI: 10.1016/j.jmaa.2007.12.063 · Zbl 1141.93025
[20] DOI: 10.1016/j.sigpro.2005.05.005 · Zbl 1163.94387
[21] DOI: 10.1109/91.481840
[22] Wu H-N, IEEE Transactions on Systems and Man Cybernetics Part B 36 pp 509– (2006)
[23] Wu L, IEEE Transactions on Fuzzy Systems 2009 pp 233– (2009)
[24] DOI: 10.1016/j.sigpro.2009.03.011 · Zbl 1178.93141
[25] DOI: 10.1109/TSMCA.2006.871648
[26] DOI: 10.1080/00207720802300370 · Zbl 1156.93382
[27] DOI: 10.1109/TCSI.2007.904640 · Zbl 1374.93134
[28] DOI: 10.1016/j.automatica.2008.03.018 · Zbl 1152.93365
[29] DOI: 10.1016/j.fss.2004.05.008 · Zbl 1142.93378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.