×

zbMATH — the first resource for mathematics

Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit. (English) Zbl 1234.34035
Summary: This Letter investigates the problem of synchronization in complex dynamical networks with time-varying delays. A periodically intermittent control scheme is proposed to achieve global exponential synchronization for a general complex network with both time-varying delays dynamical nodes and time-varying delays coupling. It is shown that the sates of the general complex network with both time-varying delays dynamical nodes and time-varying delays coupling can globally exponentially synchronize with a desired orbit under the designed intermittent controllers. Moreover, a typical network consisting of the time-delayed Chua oscillator with nearest-neighbor unidirectional time-varying delays coupling is given as an example to verify the effectiveness of the proposed control methodology.

MSC:
34D06 Synchronization of solutions to ordinary differential equations
05C82 Small world graphs, complex networks (graph-theoretic aspects)
34C28 Complex behavior and chaotic systems of ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
34B45 Boundary value problems on graphs and networks for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Strogatz, S.H., Nature, 410, 268, (2001)
[2] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Phys. rep., 424, 175, (2006)
[3] Wu, C.W., Synchronization in complex networks of nonlinear dynamical systems, (2007), World Scientific Singapore
[4] Suykens, J.A.K.; Osipov, G.V., Chaos, 18, 037101, (2008)
[5] Wang, X.; Chen, G., Physica A, 310, 521, (2002)
[6] Li, X.; Wang, X.; Chen, G., IEEE trans. circuits syst. I, 51, 2074, (2004)
[7] Chen, T.; Liu, X.; Lu, W., IEEE trans. circuits syst. I, 54, 1317, (2007)
[8] Zhou, J.; Lu, J.; Lü, J., Automatica, 44, 996, (2008)
[9] Li, Z.; Feng, G.; Hill, D., Phys. lett. A, 359, 42, (2006)
[10] Wu, J.; Jiao, L., Physica A, 378, 2111, (2008)
[11] Wang, L.; Dai, H.P.; Dong, H.; Shen, Y.H.; Sun, Y.X., Phys. lett. A, 372, 3632, (2008)
[12] Wen, S.; Chen, S.; Guo, W., Phys. lett. A, 372, 6340, (2008) · Zbl 1225.05223
[13] Zhang, Q.; Lu, J.; Lü, J.; Tse, C.K., IEEE trans. circuits syst. II, 55, 2, 183, (2008)
[14] Cai, S.; Zhou, J.; Xiang, L.; Liu, Z., Phys. lett. A, 372, 4990, (2008)
[15] Zhou, T.; Chen, L.; Wang, R., Physica D, 211, 107, (2005)
[16] Zochowski, M., Physica D, 145, 181, (2000)
[17] Li, C.; Feng, G.; Liao, X., IEEE trans. circuits syst. II, 54, 11, 1019, (2007)
[18] Li, C.; Liao, X.; Huang, T., Chaos, 17, 013103, (2007)
[19] Huang, T.; Li, C.; Liu, X., Chaos, 18, 033122, (2008)
[20] Huang, T.; Li, C.; Yu, W.; Chen, G., Nonlinearity, 22, 569, (2009)
[21] Xia, W.; Cao, J., Chaos, 19, 013120, (2009)
[22] J. Louisell, in: Proc. 5th Eur. Control Conf., Karlshruhe, Germany, 1999, F1023-1
[23] Zhou, J.; Chen, T., IEEE trans. circuit syst. II, 51, 28, (2006)
[24] Zhou, J.; Xiang, L.; Liu, Z., Physica A, 385, 729, (2007)
[25] Wu, J.; Jiao, L., Physica A, 386, 513, (2007)
[26] Li, K.; Guan, S.; Gong, X.; Lai, C.-H., Phys. lett. A, 372, 7133, (2008)
[27] Zhou, J.; Lu, J., Physica A, 386, 481, (2007)
[28] Wu, X., Physica A, 387, 997, (2008)
[29] Liu, H.; Lu, J.; Lü, J.; Hill, D.J., Automatica, 45, 1799, (2009)
[30] Lu, J.; Cao, J., Nonlinear dyn., 53, 107, (2008)
[31] Huijberts, H.; Nijmeijer, H.; Oguchi, T., Chaos, 17, 013117, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.