×

Solutions of the moment hierarchy in the kinetic theory of Maxwell models. (English) Zbl 1234.76049

Summary: In the Maxwell interaction model the collision rate is independent of the relative velocity of the colliding pair and, as a consequence, the collisional moments are bilinear combinations of velocity moments of the same or lower order. In general, however, the drift term of the Boltzmann equation couples moments of a given order to moments of a higher order, thus preventing the solvability of the moment hierarchy, unless approximate closures are introduced. On the other hand, there exist a number of states where the moment hierarchy can be recursively solved, the solution generally exposing non-Newtonian properties. The aim of this paper is to present an overview of results pertaining to some of those states, namely the planar Fourier flow (without and with a constant gravity field), the planar Couette flow, the force-driven Poiseuille flow, and the uniform shear flow.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972) · Zbl 0543.33001
[2] Acedo L., Santos A., Bobylev A.V.: On the derivation of a high-velocity tail from the Boltzmann–Fokker–Planck equation for shear flow. J. Stat. Phys. 109, 1027–1050 (2002) · Zbl 1159.82316
[3] Alaoui M., Santos A.: Poiseuille flow driven by an external force. Phys. Fluids A 4, 1273–1282 (1992) · Zbl 0781.76073
[4] Alterman Z., Frankowski K., Pekeris C.L.: Eigenvalues and eigenfunctions of the linearized Boltzmann collision operator for a Maxwell gas and for a gas of rigid spheres. Astrophys. J. Suppl. Ser. 7, 291–331 (1962)
[5] Ames Research Staff: Equations, Tables and Charts for Compressible Flow. Tech. Rep. 1135, U.S. Ames Aeronautical Laboratory, Moffett Field, CA (1953)
[6] Anderson, H.L. (ed.): A Physicist’s Desk Reference. American Institute of Physics, New York (1989)
[7] Andries P., Le Tallec P., Perlat J.P., Perthame B.: The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B/Fluids 19, 813–830 (2000) · Zbl 0967.76082
[8] Aoki K., Takata S., Nakanishi T.: A Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force. Phys. Rev. E 65, 026 315 (2002)
[9] Asmolov E., Makashev N.K., Nosik V.I.: Heat transfer between parallel plates in a gas of Maxwellian molecules. Sov. Phys. Dokl. 24, 892–894 (1979) · Zbl 0435.76046
[10] Ben-Naim E., Krapivsky P.L.: The inelastic Maxwell model. In: Pöschel, T., Luding, S. (eds) Granular Gases, Springer, Berlin (2003)
[11] Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954) · Zbl 0055.23609
[12] Bird G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)
[13] Bobylev A.V.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29–31 (1981)
[14] Brey J.J., Santos A., Dufty J.W.: Heat and momentum transport far from equilibrium. Phys. Rev. A 36, 2842–2849 (1987)
[15] Brush S.G.: Kinetic Theory, vols. I–III. Pergamon Press, London (1965) · Zbl 0148.24005
[16] Brush S.G.: The Kind of Motion we Call Heat, vols. I and II. North-Holland, Amsterdam (1976)
[17] Brush S.G.: The Kinetic Theory of Gases. An Anthology of Classic Papers with Historical Commentary. Imperial College Press, London (2003)
[18] Cercignani C.: The Boltzmann Equation and Its Applications. Springer, New York (1988) · Zbl 0646.76001
[19] Cercignani C.: Mathematical Methods in Kinetic Theory. Plenum Press, New York (1990) · Zbl 0726.76083
[20] Cercignani C., Stefanov S.: Bénard’s instability in kinetic theory. Transp. Theory Stat. Phys. 21, 371–381 (1992) · Zbl 0793.76042
[21] Chapman S., Cowling T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970) · Zbl 0049.26102
[22] Doi T., Santos A., Tij M.: Numerical study of the influence of gravity on the heat conductivity on the basis of kinetic theory. Phys. Fluids 11, 3553–3559 (1999) · Zbl 1149.76362
[23] Dorfman J.R., van Beijeren H.: The kinetic theory of gases. In: Berne, B.J. (eds) Statistical Mechanics, Part B, pp. 65–179. Plenum, New York (1977)
[24] Dufty J.W.: Kinetic theory of fluids far from equilibrium–exact results. In: Lópezde Haro, M., Varea, C. (eds) Lectures on Thermodynamics and Statistical Mechanics, pp. 166–181. World Scientific, Singapore (1990)
[25] Ernst M.H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)
[26] Esposito R., Lebowitz J.L., Marra R.: A hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994) · Zbl 0790.76072
[27] Galkin V.S.: Exact solution of the system of equations of the second-order kinetic moments for a two-scale homoenergetic affine monatomic gas flow. Fluid Dyn. 30, 467–476 (1995) · Zbl 0860.76081
[28] Gallis M.A., Torczynski J.R., Rader D.J., Tij M., Santos A.: Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow. Phys. Fluids 18, 017, 104 (2006)
[29] Gallis M.A., Torczynski J.R., Rader D.J., Tij M., Santos A.: Analytical and numerical normal solutions of the Boltzmann equation for highly nonequilibrium Fourier and Couette flows. In: Ivanov, M.S., Rebrov, A.K. (eds) Rarefied Gas Dynamics: 25th International Symposium on Rarefied Gas Dynamics, pp. 251–256. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2007)
[30] García-Colín L.S., Velasco R.M., Uribe F.J.: Beyond the Navier–Stokes equations: Burnett hydrodynamics. Phys. Rep. 465, 149–189 (2008)
[31] Garzó V., Lópezde Haro M.: Nonlinear transport for a dilute gas in steady Couette flow. Phys. Fluids 9, 776–787 (1997)
[32] Garzó V., Santos A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer, Dordrecht (2003) · Zbl 1140.82030
[33] Goldstein H.: Classical Mechanics. Addison-Wesley, Reading (1959) · Zbl 0043.18001
[34] Gorban A.N., Karlin I.V.: Short-wave limit of hydrodynamics: a soluble example. Phys. Rev. Lett. 77, 282–285 (1996)
[35] Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949) · Zbl 0037.13104
[36] Grad H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids 6, 147–181 (1963) · Zbl 0115.45006
[37] Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (1980) · Zbl 0521.33001
[38] Hendriks E.M., Nieuwenhuizen T.M.: Solution to the nonlinear Boltzmann equation for Maxwell models for nonisotropic initial conditions. J. Stat. Phys. 29, 591–615 (1982)
[39] Hess S., Malek Mansour M.: Temperature profile of a dilute gas undergoing a plane Poiseuille flow. Physica A 272, 481–496 (1999)
[40] Holway L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)
[41] Ikenberry E., Truesdell C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, I. J. Rat. Mech. Anal. 5, 1–54 (1956) · Zbl 0070.23504
[42] Kadanoff L.P., McNamara G.R., Zanetti G.: A Poiseuille viscometer for lattice gas automata. Complex Syst. 1, 791–803 (1987)
[43] Kadanoff L.P., McNamara G.R., Zanetti G.: From automata to fluid flow: comparisons of simulation and theory. Phys. Rev. A 40, 4527–4541 (1989)
[44] Karlin I.V., Dukek G., Nonnenmacher T.F.: Invariance principle for extension of hydrodynamics: nonlinear viscosity. Phys. Rev. E 55, 1573–1576 (1997)
[45] Kim C.S., Dufty J.W., Santos A., Brey J.J.: Analysis of nonlinear transport in Couette flow. Phys. Rev. A 40, 7165–7174 (1989)
[46] Kim C.S., Dufty J.W., Santos A., Brey J.J.: Hilbert-class or ”normal” solutions for stationary heat flow. Phys. Rev. A 39, 328–338 (1989)
[47] Koura K., Matsumoto H.: Variable soft sphere molecular model for inverse-power-law or Lennard–Jones potential. Phys. Fluids A 3, 2459–2465 (1991) · Zbl 0825.76715
[48] Koura K., Matsumoto H.: Variable soft sphere molecular model for air species. Phys. Fluids A 4, 1083–1085 (1992)
[49] Lees A.W., Edwards S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921–1929 (1972)
[50] Makashev N.K., Nosik V.I.: Steady Couette flow (with heat transfer) of a gas of Maxwellian molecules. Sov. Phys. Dokl. 25, 589–591 (1981) · Zbl 0484.76079
[51] Malek Mansour M., Baras F., Garcia A.L.: On the validity of hydrodynamics in plane Poiseuille flows. Physica A 240, 255–267 (1997)
[52] McLennan J.A.: Introduction to Non-Equilibrium Statistical Mechanics. Prentice Hall, Englewood Cliffs (1989)
[53] Montanero J.M., Alaoui M., Santos A., Garzó V.: Monte Carlo simulation of the Boltzmann equation for steady Fourier flow. Phys. Rev. A 49, 367–375 (1994)
[54] Montanero J.M., Garzó V.: Nonlinear Couette flow in a dilute gas: comparison between theory and molecular-dynamics simulation. Phys. Rev. E 58, 1836–1842 (1998)
[55] Montanero J.M., Santos A.: Nonequilibrium entropy of a sheared gas. Physica A 225, 7–18 (1996)
[56] Montanero J.M., Santos A., Garzó V.: Monte Carlo simulation of the Boltzmann equation for uniform shear flow. Phys. Fluids 8, 1981–1983 (1996) · Zbl 1027.76645
[57] Montanero J.M., Santos A., Garzó V.: Singular behavior of the velocity moments of a dilute gas under uniform shear flow. Phys. Rev. E 53, 1269–1272 (1996)
[58] Montanero J.M., Santos A., Garzó V.: Distribution function for large velocities of a two-dimensional gas under shear flow. J. Stat. Phys. 88, 1165–1181 (1997) · Zbl 0939.76080
[59] Montanero J.M., Santos A., Garzó V.: Monte Carlo simulation of nonlinear Couette flow in a dilute gas. Phys. Fluids 12, 3060–3073 (2000) · Zbl 1184.76374
[60] Nosik V.I.: Heat transfer between parallel plates in a mixture of gases of Maxwellian molecules. Sov. Phys. Dokl. 25, 495–497 (1981) · Zbl 0484.76080
[61] Nosik V.I.: Degeneration of the Chapman–Enskog expansion in one-dimensional motions of Maxwellian molecule gases. In: Belotserkovskii, O.M., Kogan, M.N., Kutateladze, S.S., Rebrov, A.K. (eds) Rarefied Gas Dynamics, vol. 13, pp. 237–244. Plenum Press, New York (1983)
[62] Résibois P., de Leener M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)
[63] Risso D., Cordero P.: Dilute gas Couette flow: theory and molecular dynamics simulation. Phys. Rev. E 56, 489–498 (1997)
[64] Risso D., Cordero P.: Erratum: Dilute gas Couette flow: theory and molecular dynamics simulation. Phys. Rev. E 57, 7365–7366 (1998)
[65] Risso D., Cordero P.: Generalized hydrodynamics for a Poiseuille flow: theory and simulations. Phys. Rev. E 58, 546–553 (1998)
[66] Sabbane M., Tij M.: Calculation algorithm for the collisional moments of the Boltzmann equation for Maxwell molecules. Comp. Phys. Comm. 149, 19–29 (2002) · Zbl 1196.82028
[67] Sabbane M., Tij M., Santos A.: Maxwellian gas undergoing a stationary Poiseuille flow in a pipe. Physica A 327, 264–290 (2003) · Zbl 1031.82043
[68] Santos A.: Nonlinear viscosity and velocity distribution function in a simple longitudinal flow. Phys. Rev. E 62, 6597–6607 (2000)
[69] Santos A.: Comments on nonlinear viscosity and Grad’s moment method. Phys. Rev. E 67, 053201 (2003)
[70] Santos, A., Brey, J.J., Dufty, J.W.: An exact solution to the inhomogeneous nonlinear Boltzmann equation. Tech. rep., University of Florida (1987)
[71] Santos A., Brey J.J., Garzó V.: Kinetic model for steady heat flow. Phys. Rev. A 34, 5047–5050 (1986)
[72] Santos A., Brey J.J., Kim C.S., Dufty J.W.: Velocity distribution for a gas with steady heat flow. Phys. Rev. A 39, 320–327 (1989)
[73] Santos A., Garzó V.: Exact moment solution of the Boltzmann equation for uniform shear flow. Physica A 213, 409–425 (1995)
[74] Santos A., Garzó V.: Exact non-linear transport from the Boltzmann equation. In: Harvey, J., Lord, G. (eds.) Rarefied Gas Dynamics, vol. 19, pp. 13–22. Oxford University Press, Oxford (1995)
[75] Santos A., Garzó V., Brey J.J., Dufty J.W.: Singular behavior of shear flow far from equilibrium. Phys. Rev. Lett. 71, 3971–3974 (1993)
[76] Santos A., Tij M.: Gravity-driven Poiseuille Flow in Dilute Gases. Elastic and Inelastic Collisions, chap. 5, pp. 53–67. Nova Science, New York (2006) · Zbl 1232.76050
[77] Söderholm, L.H.: On the Relation between the Hilbert and Chapman-Enskog Expansions. In: Abe, T. (ed.) Rarefied Gas Dynamics: Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, pp. 81–86. AIP Conference Proceedings, vol. 1084, Melville, NY (2009)
[78] Sone Y., Aoki K., Sugimoto H.: The Bénard problem for a rarefied gas: formation of steady flow patterns and stability of array of rolls. Phys. Fluids 9, 3898–3914 (1997) · Zbl 1185.76871
[79] Struchtrup H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005) · Zbl 1119.76002
[80] Struchtrup H., Torrilhon M.: Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046 301 (2008) · Zbl 1132.76049
[81] Taheri P., Torrilhon M., Struchtrup H.: Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017 102 (2009) · Zbl 1183.76503
[82] Tahiri E.E., Tij M., Santos A.: Monte Carlo simulation of a hard-sphere gas in the planar Fourier flow with a gravity field. Mol. Phys. 98, 239–248 (2000)
[83] Tij M., Garzó V., Santos A.: Nonlinear heat transport in a dilute gas in the presence of gravitation. Phys. Rev. E 56, 6729–6734 (1997)
[84] Tij M., Garzó V., Santos A.: Influence of gravity on nonlinear transport in the planar Couette flow. Phys. Fluids 11, 893–904 (1999) · Zbl 1147.76513
[85] Tij M., Garzó V., Santos A.: On the influence of gravity on the thermal conductivity. In: Brun, R., Campargue, R., Gatignol, R., Lengrand, J.C. (eds) Rarefied Gas Dynamics., pp. 239–246. Cépaduès Éditions, Toulouse (1999)
[86] Tij M., Sabbane M., Santos A.: Nonlinear Poiseuille flow in a gas. Phys. Fluids 10, 1021–1027 (1998) · Zbl 1031.82043
[87] Tij M., Santos A.: Perturbation analysis of a stationary nonequilibrium flow generated by an external force. J. Stat. Phys. 76, 1399–1414 (1994) · Zbl 0839.76076
[88] Tij M., Santos A.: Combined heat and momentum transport in a dilute gas. Phys. Fluids 7, 2858–2866 (1995) · Zbl 1026.76554
[89] Tij M., Santos A.: Non-Newtonian Poiseuille flow of a gas in a pipe. Physica A 289, 336–358 (2001) · Zbl 0971.76502
[90] Tij M., Santos A.: Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901–928 (2004) · Zbl 1094.82014
[91] Todd B.D., Evans D.J.: Temperature profile for Poiseuille flow. Phys. Rev. E 55, 2800–2807 (1997)
[92] Travis K.P., Todd B.D., Evans D.J.: Poiseuille flow of molecular fluids. Physica A 240, 315–327 (1997)
[93] Tritton D.J.: Physical Fluid Dynamics. Oxford University Press, Oxford (1988) · Zbl 0383.76001
[94] Truesdell C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, II. J. Rat. Mech. Anal. 5, 55–128 (1956) · Zbl 0070.23505
[95] Truesdell C., Muncaster R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York (1980)
[96] Uribe F.J., Garcia A.L.: Burnett description for plane Poiseuille flow. Phys. Rev. E 60, 4063–4078 (1999)
[97] Welander P.: On the temperature jump in a rarefied gas. Arkiv Fysik 7, 507–553 (1954) · Zbl 0057.23301
[98] Xu K.: Super-Burnett solutions for Poiseuille flow. Phys. Fluids 15, 2077–2080 (2003) · Zbl 1186.76579
[99] Zheng Y., Garcia A.L., Alder B.J.: Comparison of kinetic theory and hydrodynamics for Poiseuille flow. J. Stat. Phys. 109, 495–505 (2002) · Zbl 1101.82336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.