×

On the problem of the metastable region at morphological instability. (English) Zbl 1234.82017

Summary: The study deals with numerical analysis of the morphological stability of a growing round particle with respect to harmonic perturbations of an arbitrary amplitude. Various growth regimes (from diffusion to kinetic-limited) are considered. It is found that the critical size of the particle stability decreases as the perturbation amplitude increases and tends to the value, which was determined analytically elsewhere using the maximum entropy production principle. This result is a crucial argument in support of the hypothesis that the entropy production can be used for analysis of a nonequilibrium phase transitions similarly to thermodynamic potentials in the case of equilibrium phase transitions.

MSC:

82C35 Irreversible thermodynamics, including Onsager-Machlup theory
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
94A17 Measures of information, entropy
82D25 Statistical mechanics of crystals
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Haken, H., Synergetics (1978), Springer: Springer New York · Zbl 0447.58032
[2] Glansdorff, P.; Prigogine, I., Thermodynamic Theory of Structure, Stability and Fluctuations (1971), Willey-Interscience: Willey-Interscience New York · Zbl 0246.73005
[3] Ben-Jacob, E.; Garik, P., Nature, 343, 523 (1990)
[4] Akamatsu, S.; Faivre, G.; Ihle, T., Phys. Rev. E, 51, 4751 (1995)
[5] Sawada, Y., Phys. Rev. A, 43, 5537 (1991)
[6] Kirkaldy, J. S., Phys. Rev. B, 30, 6889 (1984)
[7] Shimizu, H.; Sawada, Y., J. Chem. Phys., 79, 3828 (1983)
[8] Martyushev, L. M.; Seleznev, V. D., Dokl. Phys., 45, 129 (2000)
[9] Kohler, M., Z. Phys., 124, 772 (1948)
[10] Ziman, J. M., Can. J. Phys., 34, 1256 (1956)
[11] Ziegler, H., (Sneddon, I. N.; Hill, R., Progress in Solid Mechanics (1963), North-Holland: North-Holland Amsterdam)
[12] Sawada, Y., Prog. Theor. Phys., 66, 68 (1981)
[13] Hill, A., Nature, 348, 426 (1990)
[14] Wang, M.; Ming, N.-b., Phys. Rev. Lett., 71, 113 (1993)
[15] (Kleidon, A.; Lorenz, R., Non-equilibrium Thermodynamics the Production of Entropy in Life, Earth, and Beyond (2004), Springer: Springer Berlin)
[16] Martyushev, L. M.; Seleznev, V. D., Phys. Rep., 426, 1 (2006)
[17] Martyushev, L. M.; Seleznev, V. D.; Kuznetsova, I. E., JETP, 91, 132 (2000)
[18] Martyushev, L. M.; Kuznetsova, I. E.; Seleznev, V. D., JETP, 94, 307 (2002)
[19] Martyushev, L. M.; Sal’nikova, E. M., Tech. Phys. Lett., 28, 242 (2002)
[20] Martyushev, L. M.; Sal’nikova, E. M., J. Phys.: Condens. Matter, 15, 1137 (2003)
[21] Kotler, G. P.; Tiller, W. A., (Peiser, H. S., Proc. Int. Conf. on Crystal Growth. Proc. Int. Conf. on Crystal Growth, Boston, MA, 1966 (1967), Oxford: Oxford Pergamon)
[22] Debroy, P. P.; Sekerka, R. F., Phys. Rev. E, 53, 6244 (1996)
[23] Martyushev, L. M.; Sal’nikova, E. M.; Chervontseva, E. A., JETP, 98, 986 (2004)
[24] Martyushev, L. M.; Serebrennikov, S. V., Tech. Phys. Lett., 32, 614 (2006)
[25] Dewar, R., J. Phys. A: Math. Gen., 36, 631 (2003)
[26] Dewar, R., J. Phys. A: Math. Gen., 38, L371 (2005)
[27] Martyushev, L. M.; Nazarova, A. S.; Seleznev, V. D., J. Phys. A: Math. Theor., 40, 371 (2007)
[28] Bruers, S., J. Phys. A: Math. Theor., 40, 7441 (2007) · Zbl 1115.82013
[29] Grinstein, G.; Linsker, R., J. Phys. A: Math. Theor., 40, 9717 (2007) · Zbl 1189.82040
[30] Zimmerman, W. B., Process Modelling and Simulation with Finite Element Methods (2004), World Scientific: World Scientific Singapore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.