Some new results on stability of Takagi-Sugeno fuzzy Hopfield neural networks. (English) Zbl 1234.93088

Summary: We propose some new results on stability properties of Takagi–Sugeno fuzzy Hopfield neural networks with time-delay. Based on Lyapunov stability theory, a new learning law is derived to guarantee passivity and asymptotic stability of Takagi–Sugeno fuzzy Hopfield neural networks. Furthermore, a new condition for Input-to-State Stability (ISS) is established. Illustrative examples are given to demonstrate the effectiveness of the proposed results.


93D20 Asymptotic stability in control theory
93D25 Input-output approaches in control theory
93C42 Fuzzy control/observation systems


LMI toolbox
Full Text: DOI


[1] Jin, L.; Gupta, M.M., Stable dynamic backpropagation learning in recurrent neural networks, IEEE trans. neural networks, 10, 1321-1334, (1999)
[2] Hopfield, J.J., Neurons with grade response have collective computational properties like those of two-state neurons, Proc. natl. acad. sci., 81, 3088-3092, (1984) · Zbl 1371.92015
[3] Gupta, M.M.; Jin, L.; Homma, N., Static and dynamic neural networks, (2003), Wiley-Interscience
[4] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE trans. syst. man cybern., 15, 116-132, (1985) · Zbl 0576.93021
[5] Tanaka, K.; Sugeno, M., Stability analysis and design of fuzzy control systems, Fuzzy sets syst., 45, 135-156, (1992) · Zbl 0758.93042
[6] Mastorocostas, P.A.; Hilas, C.S., A block-diagonal recurrent fuzzy neural network for system identification, Neural comput. appl., 18, 7, 707-717, (2009)
[7] Huang, H.; Ho, D.W.C.; Lam, J., Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE trans. circ. syst. II, 52, 251-255, (2005)
[8] Ali, M.S.; Balasubramaniam, P., Stability analysis of uncertain fuzzy Hopfield neural networks with time delays, Commun. nonlinear sci. numer. simul., 14, 2776-2783, (2009) · Zbl 1221.34191
[9] Li, H.; Chen, B.; Zhou, Q.; Qian, W., Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters, IEEE trans. syst. man cybern. B, 39, 94-102, (2009)
[10] Liang, X.B.; Wu, L.D., A simple proof of a necessary and sufficient condition for absolute stability of symmetric neural networks, IEEE trans. circuits syst. I, 45, 1010-1011, (1998) · Zbl 1055.93548
[11] Sanchez, E.N.; Perez, J.P., Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE trans. circuits syst. I, 46, 1395-1398, (1999) · Zbl 0956.68133
[12] Chu, T.; Zhang, C.; Zhang, Z., Necessary and sufficient condition for absolute stability of normal neural networks, Neural networks, 16, 1223-1227, (2003)
[13] Chu, T.; Zhang, C., New necessary and sufficient conditions for absolute stability of neural networks, Neural networks, 20, 94-101, (2007) · Zbl 1158.68443
[14] Rovithakis, G.A.; Christodoulou, M.A., Adaptive control of unknown plants using dynamical neural networks, IEEE trans. syst. man cybern., 24, 400-412, (1994) · Zbl 1371.93112
[15] Jagannathan, S.; Lewis, F.L., Identification of nonlinear dynamical systems using multilayered neural networks, Automatica, 32, 1707-1712, (1996) · Zbl 0879.93010
[16] Suykens, J.A.K.; Vandewalle, J.; De Moor, B., Lure systems with multilayer perceptron and recurrent neural networks; absolute stability and dissipativity, IEEE trans. autom. control, 44, 770-774, (1999) · Zbl 0958.93076
[17] Chairez, I.; Poznyak, A.; Poznyak, T., New sliding-mode learning law for dynamic neural network observer, IEEE trans. circuits syst. II, 53, 1338-1342, (2006) · Zbl 1120.93351
[18] Rubio, J.J.; Yu, W., Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm, Neurocomputing, 70, 2460-2466, (2007)
[19] Khalil, H.K., Nonlinear systems, (2001), Prentice-Hall · Zbl 0626.34052
[20] Yu, W.; Li, X., Some stability properties of dynamic neural networks, IEEE trans. circuits syst. I, 48, 256-259, (2001) · Zbl 1019.82015
[21] Yu, W.; Li, X., Passivity analysis of dynamic neural networks with different time-scales, Neural process. lett., 25, 143-155, (2007)
[22] Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishinan, V., Linear matrix inequalities in systems and control theory, (1994), SIAM Philadelphia, PA
[23] Byrnes, C.I.; Isidori, A.; Willem, J.C., Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system, IEEE trans. autom. control, 36, 1228-1240, (1991) · Zbl 0758.93007
[24] Sontag, E.D.; Wang, Y., On characterizations of the input-to-state stability property, Syst. control lett., 24, 351-359, (1995) · Zbl 0877.93121
[25] Gahinet, P.; Nemirovski, A.; Laub, A.J.; Chilali, M., LMI control toolbox, (1995), The Mathworks Inc.
[26] B. Mansouri, A. Kruszewski, K. Guelton, N. Manamanni, Sub-optimal tracking control for uncertain T-S fuzzy models, in: Proceedings of IFAC Workshop on Advanced Fuzzy/Neural Control, 2007. · Zbl 1158.93024
[27] Hunt, K.J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P.J., Neural networks for control systems—a survey, Automatica, 28, 1083-1112, (1992) · Zbl 0763.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.