zbMATH — the first resource for mathematics

A decomposition algorithm for convex nondifferentiable minimization with errors. (English) Zbl 1235.65066
Summary: A decomposition algorithm based on proximal bundle-type method with inexact data is presented for minimizing an unconstrained nonsmooth convex function \(f\). At each iteration, only the approximate evaluation of \(f\) and its approximate subgradients are required which make the algorithm easier to implement. It is shown that every cluster of the sequence of iterates generated by the proposed algorithm is an exact solution of the unconstrained minimization problem. Numerical tests emphasize the theoretical findings.

65K05 Numerical mathematical programming methods
Full Text: DOI
[1] J. J. Moreau, “Proximitéet dualité dans un espace hilbertien,” Bulletin de la Société Mathématique de France, vol. 93, pp. 273-299, 1965. · Zbl 0136.12101 · numdam:BSMF_1965__93__273_0 · eudml:87067
[2] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal on Control and Optimization, vol. 14, no. 5, pp. 877-898, 1976. · Zbl 0358.90053 · doi:10.1137/0314056
[3] A. Auslender, “Numerical methods for nondifferentiable convex optimization,” Mathematical Programming Study, no. 30, pp. 102-126, 1987. · Zbl 0616.90052 · doi:10.1007/BFb0121157
[4] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algo-Rithms, vol. 2, Springer, 1993.
[5] C. Lemaréchal, F. Oustry, and C. Sagastizábal, “The 𝒰-lagrangian of a convex function,” Transactions of the American Mathematical Society, vol. 352, no. 2, pp. 711-729, 2000. · Zbl 0939.49014 · doi:10.1090/S0002-9947-99-02243-6
[6] R. Mifflin and C. Sagastizábal, “𝒱𝒰-decomposition derivatives for convex max-functions,” in Ill-Posed Variational Problems and Regularization Techniques, vol. 477 of Lecture Notes in Economics and Mathematical Systems, pp. 167-186, Springer, Berlin, Germany, 1999. · Zbl 0944.65069
[7] R. Mifflin and C. Sagastizábal, “On 𝒱𝒰-theory for functions with primal-dual gradient structure,” SIAM Journal on Optimization, vol. 11, no. 2, pp. 547-571, 2000. · Zbl 1015.90084 · doi:10.1137/S1052623499350967
[8] R. Mifflin and C. Sagastizábal, “A 𝒱𝒰-algorithm for convex minimization,” Mathematical Programming B, vol. 104, no. 2-3, pp. 583-608, 2005. · Zbl 1085.65051 · doi:10.1007/s10107-005-0630-3
[9] Y. Lu, L.-P. Pang, X.-J. Liang, and Z.-Q. Xia, “An approximate decomposition algorithm for convex minimization,” Journal of Computational and Applied Mathematics, vol. 234, no. 3, pp. 658-666, 2010. · Zbl 1190.65098 · doi:10.1016/j.cam.2010.01.003
[10] R. Mifflin and C. Sagastizábal, “Proximal points are on the fast track,” Journal of Convex Analysis, vol. 9, no. 2, pp. 563-579, 2002. · Zbl 1037.49031
[11] M. V. Solodov, “On approximations with finite precision in bundle methods for nonsmooth optimization,” Journal of Optimization Theory and Applications, vol. 119, no. 1, pp. 151-165, 2003. · Zbl 1094.90046 · doi:10.1023/B:JOTA.0000005046.70410.02
[12] R. Correa and C. Lemaréchal, “Convergence of some algorithms for convex minimization,” Mathematical Programming B, vol. 62, no. 2, pp. 261-275, 1993. · Zbl 0805.90083 · doi:10.1007/BF01585170
[13] M. Hintermüller, “A proximal bundle method based on approximate subgradients,” Computational Optimization and Applications, vol. 20, no. 3, pp. 245-266, 2001. · Zbl 1054.90053 · doi:10.1023/A:1011259017643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.