×

zbMATH — the first resource for mathematics

New type of Brownian motion. (English) Zbl 1235.82053
Summary: We consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some random time after the collision (Brownian motion with adhesion for a harmonically bound particle). This is another form of stochastic oscillator, different from the oscillators usually studied which are subject to a random force or having random frequency or random damping. Calculation of the first two stationary moments shows that for white multiplicative noise of week strength the second moment coincides with that of usual Brownian motion, but for symmetric dichotomous noise, the second moment may appear the same type of the “energetic” instability, which exists for white noise random frequency or damping coefficient.

MSC:
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mazo, R.: Brownian Motion: Fluctuations, Dynamics and Applications. Oxford Science Publication, London (2002) · Zbl 1140.60001
[2] Shapiro, E., Loginov, V.M.: Physica A 91, 563 (1978) · doi:10.1016/0378-4371(78)90198-X
[3] Roul, S.: In: Programming for Mathematicians. Springer, Berlin (2000), §10.13
[4] Gitterman, M.: The Noisy Oscillator: The First Hundred Years, from Einstein, Until Now. World Scientific, Singapore (2005) · Zbl 1145.34002
[5] Portman, J., Khasin, M., Shaw, S.W., Dykman, M.I.: Bulletin of the APS. In: March Meeting (2010)
[6] Luczka, J., Hanggi, P., Gadomski, A.: Phys. Rev. E 51, 5762 (1995)
[7] Sewbawe Abdalla, M.: Phys. Rev. A 34, 4598 (1986) · doi:10.1103/PhysRevA.34.1
[8] Lambiotte, R., Ausloos, M.: Phys. Rev. E 73, 011105 (2005)
[9] Gadomski, A., Siódmiak, J.: Cryst. Res. Technol. 37, 281 (2002) · doi:10.1002/1521-4079(200202)37:2/3<281::AID-CRAT281>3.0.CO;2-D
[10] Rubì, M., Gadomski, A.: Physica A 326, 333 (2003) · Zbl 1083.82527 · doi:10.1016/S0378-4371(03)00282-6
[11] Gadomski, A., Siódmiak, J., Santamarìa-Holek, I., Rubì, J.M., Ausloos, M.: Acta Phys. Polon. B 36, 1537 (2005)
[12] Pérez, A.T., Saville, D., Soria, C.: Europhys. Lett. 55, 425 (2001) · doi:10.1209/epl/i2001-00431-5
[13] Goldhirsch, I., Zanetti, G.: Phys. Rev. Lett. 70, 1619 (1993) · doi:10.1103/PhysRevLett.70.1619
[14] Luding, S., Herrmann, H.J.: Chaos 9, 673 (1999) · Zbl 1055.74510 · doi:10.1063/1.166441
[15] See Temizer, I.: M.Sc. thesis. University of California, Berkeley (2003), unpublished; www.me.berkeley.edu/compmat/ilkerDOCS/MSthesis.pdf
[16] Benz, W.: Spatium 6, 3 (2000)
[17] Blum, J., et al.: Phys. Rev. Lett. 85, 2426 (2000); Blum, J., Wurm, G.: Icarus 143, 138 (2000) · doi:10.1103/PhysRevLett.85.2426
[18] Weidenschilling, S.J., Spaute, D., Davis, D.R., Marzari, F., Ohtsuki, K.: Icarus 128, 429 (1997) · doi:10.1006/icar.1997.5747
[19] Kaiser, N.: Appl. Opt. 41, 3053 (2002) · doi:10.1364/AO.41.003053
[20] Nagatani, T.: J. Phys. Soc. Jpn. 65, 3386 (1996) · doi:10.1143/JPSJ.65.3386
[21] Ben-Naim, E., Krapivsky, P.L., Redner, S.: Phys. Rev. E 50, 822 (1994) · doi:10.1103/PhysRevE.50.822
[22] Ausloos, M., Ivanova, K.: Eur. Phys. J. B 27, 177 (2002)
[23] Ausloos, M., Ivanova, K.. In: Takayasu, H. (ed.) Proceedings of the Second Nikkei Econophysics Symposium. Springer, Berlin (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.