×

zbMATH — the first resource for mathematics

New criteria for synchronization stability of general complex dynamical networks with coupling delays. (English) Zbl 1236.34069
Summary: Complex dynamical networks are attracting more and more attention due to their ubiquity in the natural world. This Letter presents several new delay-dependent conditions for a general complex dynamical network model with coupling delays, which guarantee the synchronized states to be asymptotically stable. These conditions are expressed as linear matrix inequalities, readily solvable by available numerical software. Both continuous- and discrete-time networks are taken into consideration. It is shown theoretically that the condition for continuous-time delayed networks developed in this Letter encompasses an established result in the literature as a special case. In addition, similar delay-dependent results are derived for discrete-time delayed networks, for the first time in the literature. The most important feature of the results obtained in this Letter is that they are less conservative, which is illustrated by a numerical example.

MSC:
34D06 Synchronization of solutions to ordinary differential equations
93D99 Stability of control systems
Software:
LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, R.; Barabasi, A.-L., Rev. mod. phys., 74, 47, (2002)
[2] Amaral, L.A.N.; Ottino, J.M., Eur. phys. J. B, 38, 147, (2004)
[3] Nakamura, I., Phys. rev. E, 68, 045104, (2003)
[4] Paul, G.; Tanizawa, T.; Havlin, S.; Stanley, H.E., Eur. phys. J. B, 38, 187, (2004)
[5] Strogatz, S.H., Nature, 410, 268, (2001)
[6] Wang, X.F.; Chen, G., IEEE circuits systems mag., 3, 6, (2003)
[7] Erdös, P.; Renyi, A., Publ. math. inst. hung. acad. sci., 5, 17, (1959)
[8] Watts, D.J.; Strogatz, S.H., Nature, 393, 440, (1998)
[9] Barabasi, A.-L.; Albert, R., Science, 286, 509, (1999)
[10] Barabasi, A.-L.; Albert, R.; Jeong, H., Physica A, 272, 173, (1999)
[11] Aldana, M., Physica D, 185, 45, (2003)
[12] Dangalchev, C., Physica A, 338, 659, (2004)
[13] Wang, X.F.; Chen, G., Physica A, 310, 521, (2002)
[14] Wang, X.F.; Chen, G., IEEE trans. circuits systems I, 49, 54, (2002)
[15] Wang, X.F.; Chen, G., Int. J. bifur. chaos, 12, 187, (2002)
[16] Li, C.G.; Chen, G., Physica A, 343, 263, (2004)
[17] Kolmanovskii, V.; Myshkis, A., Introduction to the theory and applications of functional differential equations, (1999), Kluwer Academic Dordrecht · Zbl 0917.34001
[18] Cao, J.D., Phys. lett. A, 261, 303, (1999)
[19] Cao, J.D., Phys. lett. A, 307, 136, (2003)
[20] Cao, J.D.; Li, P.; Wang, W.W., Phys. lett. A, 353, 318, (2006)
[21] He, Y.; Wang, Q.; Zheng, W., Chaos solitons fractals, 26, 5, 1349, (2005)
[22] He, Y.; Wu, M.; She, J.H.; Liu, G.P., Systems control lett., 51, 1, 57, (2004)
[23] Ho, D.W.C.; Li, J.M.; Niu, Y.G., IEEE trans. neural networks, 16, 625, (2005)
[24] Hua, C.C.; Guan, X.P., Phys. lett. A, 314, 72, (2003)
[25] Hua, C.C.; Long, C.N.; Guan, X.P., Phys. lett. A, 352, 335, (2006)
[26] Liang, J.L.; Cao, J.D.; Ho, D., Phys. lett. A, 335, 226, (2005)
[27] Wang, Z.; Liu, Y.R.; Liu, X.H., Phys. lett. A, 345, 299, (2005)
[28] Xu, S.; Chu, Y.M.; Lu, J.W., Phys. lett. A, 352, 371, (2006)
[29] Gahinet, P.; Nemirovskii, A.; Laub, A.J.; Chilali, M., LMI control toolbox User’s guide, (1995), The Math. Works Inc. Natick
[30] Gahinet, P.; Apkarian, P., Int. J. robust nonlinear control, 4, 421, (1994)
[31] Iwasaki, T.; Skelton, R.E., Automatica, 30, 8, 1307, (1994)
[32] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory, (1994), SIAM Philadelphia · Zbl 0816.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.