Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. (English) Zbl 1236.35058

Summary: Semilinear elliptic PDEs are dealt with, either in the half-space or in overdetermined settings. We obtain several new results and also give new proofs of celebrated theorems by exploiting some geometric analysis of level sets, a geometric inequality and a pointwise gradient estimate.


35J61 Semilinear elliptic equations
35N99 Overdetermined problems for partial differential equations and systems of partial differential equations
Full Text: DOI


[1] Alberti G., Ambrosio L., Cabré X.: On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65(1–3), 9–33 (2001) (Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday) · Zbl 1121.35312
[2] Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Symmetry for elliptic equations in a half space. In: Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., Vol. 29, Masson, Paris, 27–42, 1993 · Zbl 0793.35034
[3] Berestycki H., Caffarelli L.A., Nirenberg L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math. 50(11), 1089–1111 (1997) · Zbl 0906.35035
[4] Berestycki H., Caffarelli L., Nirenberg L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 69–94 (1998) 1997. Dedicated to Ennio De Giorgi · Zbl 1079.35513
[5] Caffarelli L., Garofalo N., Segàla F.: A gradient bound for entire solutions of quasi-linear equations and its consequences. Comm. Pure Appl. Math. 47(11), 1457–1473 (1994) · Zbl 0819.35016
[6] Dupaigne, L., Farina, A.: Stable solutions of \({-\Delta u = f (u) \,{\mathrm in}\, {\mathbb{R}}^{N}}\) (2008, preprint) · Zbl 1406.35126
[7] Ebenfelt P.: Some results on the Pompeiu problem. Ann. Acad. Sci. Fenn. Ser. A I Math. 18(2), 323–341 (1993) · Zbl 0793.30034
[8] Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb. Sect. A 93(1–2), 1–14 (1982/1983) · Zbl 0506.35035
[9] Farina A.(2007) Liouville-type theorems for elliptic problems. Handbook of Differential Equations: Stationary Partial Differential Equations. Vol. IV (Ed. Chipot M.). Elsevier, Amsterdam, 61–116, 2007 · Zbl 1191.35128
[10] Farina, A., Sciunzi, B., Valdinoci, E.: Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 7(4), 741–791 (2008). http://www.math.utexas.edu/mp_arc/ · Zbl 1180.35251
[11] Farina A., Valdinoci E.: The state of the art for a conjecture of De Giorgi and related problems. In: Du, Y., Ishii, H., Lin, W.-Y. (eds) Recent Progress on Reaction Diffusion Systems and Viscosity Solutions. Series on Advances in Mathematics for Applied Sciences, pp. 372. World Scientific, Singapore (2008) · Zbl 1183.35137
[12] Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, Vol 80. Birkhäuser Verlag, Basel (1984) · Zbl 0545.49018
[13] Garofalo N., Segàla F.: Another step toward the solution of the Pompeiu problem in the plane. Comm. Partial Differ. Equ. 18(3–4), 491–503 (1993) · Zbl 0818.35136
[14] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn, Vol. 224. Springer, Berlin, 1983 · Zbl 0562.35001
[15] Modica L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Comm. Pure Appl. Math. 38(5), 679–684 (1985) · Zbl 0612.35051
[16] Pucci P., Serrin J.: The Maximum Principle. Progress in Nonlinear Differential Equations and their Applications, Vol. 73. Birkhäuser Verlag, Basel (2007) · Zbl 1134.35001
[17] Serrin J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971) · Zbl 0222.31007
[18] Sernesi E.: Geometria 2. Bollati Boringhieri, Torino (1994)
[19] Sternberg P., Zumbrun K.: Connectivity of phase boundaries in strictly convex domains. Arch. Ration. Mech. Anal. 141(4), 375–400 (1998) · Zbl 0911.49025
[20] Sternberg P., Zumbrun K.: A Poincaré inequality with applications to volume- constrained area-minimizing surfaces. J. Reine Angew. Math. 503, 63–85 (1998) · Zbl 0967.53006
[21] Willms N.B., Chamberland M., Gladwell G.M.L.: A duality theorem for an overdetermined eigenvalue problem. Z. Angew. Math. Phys. 46(4), 623–629 (1995) · Zbl 0842.35066
[22] Weinberger H.F.: Remark on the preceding paper of Serrin. Arch. Ration. Mech. Anal. 43, 319–320 (1971) · Zbl 0222.31008
[23] Yau, S.T.: Problem section. Seminar on Differential Geometry. Ann. Math. Stud., Vol. 102, Princeton University Press, Princeton, 669–706, 1982
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.