zbMATH — the first resource for mathematics

A mathematical model for cylindrical, fiber reinforced electro-pneumatic actuators. (English) Zbl 1236.74059
Summary: In recent years, dielectric elastomers have received increasing attention due to their unparalleled large strain actuation response (>100%). The force output, however, has remained a major limiting factor for many applications. To address this limitation, a model for a fiber reinforced dielectric elastomer actuator based on the deformation mechanism of McKibben actuators is presented. In this novel configuration, the outer cylindrical surface of a dielectric elastomer is enclosed by a network of helical fibers that are thin, flexible and inextensible. This configuration yields an axially contractile actuator, in contrast to unreinforced actuators which extend. The role of the fiber network is twofold: (i) to serve as reinforcement to improve the load-bearing capability of dielectric elastomers, and (ii) to render the actuator inextensible in the axial direction such that the only free deformation path is simultaneous radial expansion and axial contraction. In this paper, a mathematical model of the electromechanical response of fiber reinforced dielectric elastomers is derived. The model is developed within a continuum mechanics framework for large deformations. The cylindrical electro-pneumatic actuator is modeled by adapting Green and Adkins’ theory of reinforced cylinders to account for the applied electric field. Using this approach, numerical solutions are obtained assuming a Mooney-Rivlin material model. The results indicate that the relationship between the contractile force and axial shortening is bilinear within the voltage range considered. The characteristic response as a function of various system parameters such as the fiber angle, inflation pressure, and the applied voltage are reported. In this paper, the elastic portion of the modeling approach is validated using experimental data for McKibben actuators.

74E30 Composite and mixture properties
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI
[1] Adkins, J. E.; Rivlin, R. S.: Large elastic deformations of isotropic materials. X. reinforcement by inextensible cords, Philosophical transactions of the royal society of London, series A, mathematical and physical sciences 248, No. 944, 201-233 (1955) · Zbl 0066.18802 · doi:10.1098/rsta.1955.0014
[2] Bar-Cohen, Y.: Electroactive polymers as artificial muscles: a review, Journal of spacecraft and rockets 39, No. 6, 822-827 (2002)
[3] Bar-Cohen, Y., 2004. EAP as Artificial Muscles – Progress and Challenges. In: Proceedings of SPIE, Smart Structures and Materials: EAPAD, vol. 5385, San Diego, pp. 10 – 16.
[4] Begley, M. R.; Bart-Smith, H.; Scott, O. N.; Jones, M. H.; Reed, M. L.: The electro-mechanical response of elastomer membranes coated with ultra-thin metal electrodes, Journal of the mechanics and physics of soldis 53, 2557-2578 (2005) · Zbl 1162.74300 · doi:10.1016/j.jmps.2005.05.002
[5] Bhattacharya, K.; Jiangyu, L.; Xiao, Y.: Electro-mechanical models for optimal design and effective behavior of electro-active polymers, Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges, 309-330 (2003)
[6] Carpi, F.; De Rossi, D.: Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation, Journal of materials science and engineering C 24, 555-562 (2004)
[7] Carpi, F.; Migliore, A.; Serra, G.; De Rossi, D.: Helical dielectric elastomer actuators, Smart materials and structures 14, 1210-1216 (2005)
[8] Choi, H., Ryew, S., K., J., Kim, H., Jeon, J., Nam, J., 2002. Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis. In: Proceedings of IEEE: International Conference on Robotics and Automation, vol. 3, Washington, DC, pp. 3212 – 3217.
[9] Chou, C.; Hannaford, B.: Measurement and modeling of mckibben pneumatic artificial muscles, IEEE transactions on robotica and automation 12, 90-102 (1996)
[10] Eringen, A. C.: Nonlinear theory of continuous media, (1962)
[11] Fox, J.W., Goulbourne, N.C., 2006. A study on the effect of flexible electrodes and passive layers on the performance of dielectric elastomer membranes. In: Proceedings ASME IMECE, vol. 15888, Chicago, 9 pp.
[12] Goulbourne, N.C., 2005. Electroelastic modeling of dielectric elastomer membrane actuators. Mechanical Engineering, Ph.D. thesis, The Pennsylvania State University, University Park, 149 pp.
[13] Goulbourne, N. C.; Mockensturm, E. M.; Frecker, M.: A nonlinear model for dielectric elastomer membranes, ASME journal of applied mechanics 72, No. 6, 899-906 (2005) · Zbl 1111.74425 · doi:10.1115/1.2047597
[14] Green, A. E.; Adkins, J. E.: Large elastic deformations, (1970) · Zbl 0227.73067
[15] Klute, G.: Accounting for elastic energy storage in mckibben artificial muscle actuators, Transactions of A SME, journal of dynamic systems, measurement, and control 122, 386-388 (2000)
[16] Klute, G., Czerniecki, J., Hannaford, B., 1999. McKibben Artificial Muscles: Pneumatic Actuators with Biomechanical Intelligence. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 5038-3, Atlanta, pp. 221 – 226.
[17] Kofod, G.: Dielectric elastomer actuators, (2001)
[18] Kopecny, L., 2003. Producing of Tactile Feedback via Pneumatic Muscles. In: IEEE ICIT 7852-0, Maribor, pp. 685 – 687.
[19] Kornbluh, R.; Pelrine, R.; Pei, Q.; Oh, S.; Joseph, J.: Ultrahigh strain response of field-actuated elastomeric polymers, Proceedings of SPIE, smart structures and materials: EAPAD 3987, 51-64 (2000)
[20] Kydoniefs, A. D.: Finite axisymmetric deformations of an initially cylindrical elastic membrane, Quarterly journal of mechanics and applied mathematics 22, 87-95 (1969) · Zbl 0167.23802 · doi:10.1093/qjmam/22.1.87
[21] Kydoniefs, A. D.: Finite axisymmetric deformations of an initially cylindrical membrane reinforced with inextensible cords, Quarterly journal of mechanics and applied mathematics 23, No. 4, 481-488 (1969) · Zbl 0224.73055 · doi:10.1093/qjmam/23.4.481
[22] Kydoniefs, A. D.: Finite axisymmetric deformations of initially cylindrical reinforced membranes, Rubber chemistry and technology 43, No. 1, 63-83 (1970) · Zbl 0224.73055
[23] Landau, L. D.; Lifshitz, E. M.: Electrodynamics of continuous media, (1984) · Zbl 0122.45002
[24] Liu, W.; Rahn, C. R.: Fiber-reinforced membrane models of mckibben actuators, Journal of applied mechanics 70, 853-859 (2003) · Zbl 1110.74566 · doi:10.1115/1.1630812
[25] Mangan, E., Kingsley, D., Quinn, R., Chiel, H., 2002. Development of a Peristaltic Endoscope. In: Proceedings IEEE: International Conference on Robotics and Automation, vol. 1, Washington DC, pp. 347 – 352.
[26] Mangan, E.; Kingsley, D.; Quinn, R.; Sutton, G.; Mansour, J.: A biologically inspired gripping device, Industrial robot: an international journal 32, No. 1, 49-54 (2005)
[27] Matsikoudi-Iliopoulou, M.: Finite axisymmetric deformations with torsion of an initially cylindrical membrane reinforced with one family inextensible cords, International journal of engineering science 25, No. 6, 673-680 (1987) · Zbl 0612.73041 · doi:10.1016/0020-7225(87)90056-5
[28] Maxwell, J. C.: A treatise on electricity and magnetism, (1954) · Zbl 0056.20612
[29] Nakamura, T., Saga, N., Yaegashi, K., 2003. Development of a pneumatic artificial muscle based on biomechanical characteristics. In: Proceedings of IEEE Transactions, Maribor, pp. 729 – 734.
[30] Pei, Q., Rosenthal, M., Pelrine, R., Stanford, S., Kornbluh, R., 2003. Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. In: Proceedings of SPIE, Smart Structures and Materials, vol. 4698, San Diego, pp. 281 – 290.
[31] Pei, Q., Pelrine, R., Rosenthal, M., Stanford, S., Prahlad, H., Kornbluh, R., 2004. Recent PROGRESS ON ELECTROELASTOMER ARTIFICIAL MUSCLES AND THEIR APPLICATION TO BIOMIMETIC Robots. In: Proceedings of SPIE, Smart Structures and Materials: Electroactive Polymer Actuators and Devices, vol. 5385, San Diego, pp. 41 – 50.
[32] Pelrine, R.; Kornbluh, R.; Joseph, J.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sensors and actuators A: physical 64, 77-85 (1998)
[33] Pelrine, R.; Kornbluh, R.; Joseph, J.; Heydt, R.; Pei, Q.; Chiba, S.: High-field deformation of elastomeric dielectrics for actuators, Materials science and engineering C 11, 89-100 (2000)
[34] Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%, Science 287, 836-839 (2000)
[35] Pelrine, R., Kornbluh, R., Pei, Q., Stanford, S., Oh, S., Eckerle, J., 2002. Dielectric Elastomer Artificial Muscle Actuators:Toward Biomimetic Motion. In: Proceedings of SPIE, Smart Structures and Materials: EAPAD, vol. 4695, pp. 126 – 137.
[36] Repperger, D.W., Phillips, C.A., Johnson, D.C., Harmon, R.D., Johnson, K., 1997. A study of pneumatic muscle technology for possible assistance in mobility. In: Proceedings of the IEEE EMBS, vol. 5, Chicago, pp. 1884 – 1887.
[37] Reynolds, D. B.; Repperger, D. W.; Phillips, C. A.; Bandry, G.: Modeling the dynamic characteristics of pneumatic muscle, Annals of biomedical engineering 31, 310-317 (2003)
[38] Rivlin, R. S.: Large elastic deformations of isotropic materials. VI. further results in the theory of torsion, shear and flexure, Philosophical transactions of the royal society of London, series A, mathematical and physical sciences 242, 173-195 (1949) · Zbl 0035.41503 · doi:10.1098/rsta.1949.0009
[39] Schulte, H.F., 1961. In: Council, N.A.o.S.-N.R. (Ed.), The Application of External Power in Prosthetics and Orthotics: The Characteristics of the McKibben Artificial Muscle, vol. 874, pp. 94 – 115.
[40] Schwinger, J.; Deraad, L.; Milton, K.; Tsai, W.: Classical electrodynamics, (1998)
[41] Sommer-Larsen, P., Kofod, G., 2002. Performance of dielectric elastomer actuators and materials. In: Proceedings of SPIE, Smart Structures and Materials: EAPAD, vol. 4695, pp. 158 – 166.
[42] Takuma, T., Nakajima, S., Hosoda, K., Asada, M., 2004. Design of self-contained biped walker with pneumatic actuators. In: Proceedings of SICE Annual Conference, vol. 3, Sapporo, pp. 2520 – 2524.
[43] Toupin, R. A.: The elastic dielectric, Journal of rational mechanics and analysis 5, No. 6, 850-915 (1956) · Zbl 0072.23803
[44] Vaidyanathan, R.; Chiel, H.; Quinn, R.: A hydrostatic robot for marine applications, Robotics and autonomous systems 30, 103-113 (2000)
[45] Wingert, A., Lichter, M., Dubowsky, S., Hafez, M., 2002. Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers. In: Proceedings of SPIE, Smart Structures and Materials: EAPAD, vol. 4695, pp. 415 – 423.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.