×

On the theory of porous elastic rods. (English) Zbl 1236.74140

Summary: We consider the direct approach to the theory of rods, in which the thin body is modelled as a deformable curve with a triad of rigidly rotating orthonormal vectors attached to every material point. In this context, we employ the theory of elastic materials with voids to describe the mechanical behavior of porous rods. First, we derive the dynamical nonlinear field equations of the model. Then, in the framework of linear theory, we prove the uniqueness of the solution to the associated boundary-initial-value problem. We identify the relevant field quantities from the theory of directed curves by comparison with the three-dimensional equations of straight porous rods. Finally, for orthotropic and homogeneous rods, we determine the constitutive coefficients in terms of the three-dimensional elasticity constants by solving several problems in the two different approaches.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altenbach, H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates, Int. J. Solids struct. 37, 3503-3520 (2000) · Zbl 0993.74035 · doi:10.1016/S0020-7683(99)00057-8
[2] Altenbach, H.; Eremeyev, V. A.: Direct approach-based analysis of plates composed of functionally graded materials, Arch. appl. Mech. 78, 775-794 (2008) · Zbl 1161.74426 · doi:10.1007/s00419-007-0192-3
[3] Altenbach, H.; Eremeyev, V. A.: On the bending of viscoelastic plates made of polymer foams, Acta mech. 204, 137-154 (2009) · Zbl 1165.74030 · doi:10.1007/s00707-008-0053-3
[4] Altenbach, H.; Naumenko, K.; Zhilin, P. A.: A direct approach to the formulation of constitutive equations for rods and shells, Shell structures: theory and applications, 87-90 (2006)
[5] Altenbach, H.; Zhilin, P. A.: A general theory of elastic simple shells (in russian), Uspekhi mekhaniki 11, 107-148 (1988)
[6] Antman, S. S.: Nonlinear problems of elasticity, Series applied mathematical sciences 107 (1995) · Zbl 0820.73002
[7] Berdichevsky, V. L.: Equations of the theory of anisotropic inhomogeneous rods (in russian), Dokl. akad. Nauk SSR 228, 558-561 (1976) · Zbl 0393.73042
[8] Berdichevsky, V. L.: Variational principles of continuum mechanics, Applications (2009) · Zbl 1189.49002
[9] Berdichevsky, V. L.; Kvashnina, S. S.: On equations describing the transverse vibrations of elastic bars (in russian), Prikl. matem. Mekhan. 40, 120-135 (1976) · Zbl 0352.73051 · doi:10.1016/0021-8928(76)90117-9
[10] Berdichevsky, V. L.; Staroselskii, L. A.: Bending, extension and torsion of twisted rods (in russian), Prikl. matem. Mekhan. 49, 746-755 (1985) · Zbl 0613.73009
[11] Bîrsan, M.: On the theory of elastic shells made from a material with voids, Int. J. Solids struct. 43, 3106-3123 (2006) · Zbl 1120.74611 · doi:10.1016/j.ijsolstr.2005.05.028
[12] Bîrsan, M.: Inequalities of korn’s type and existence results in the theory of Cosserat elastic shells, J. elasticity 90, 227-239 (2008) · Zbl 1133.74029 · doi:10.1007/s10659-007-9140-2
[13] Bychkov, A. A.; Karpinskii, D. N.: Analysis of the conditions of necking in a porous rod subjected to tension, Strength mater. 30, 274-281 (1998)
[14] Capriz, G.: Continua with microstructure, Springer tracts in natural philosophy 35 (1989) · Zbl 0676.73001
[15] Capriz, G.; Podio-Guidugli, P.: Materials with spherical structure, Arch. rational mech. Anal. 75, 269-279 (1981) · Zbl 0484.73002 · doi:10.1007/BF00250786
[16] Ciarlet, P. G.: Mathematical elasticity, Theory of shells (2000) · Zbl 0953.74004
[17] Ciarletta, M.; Ieşan, D.: Non-classical elastic solids, Pitman res. Notes math. 293 (1993) · Zbl 0790.73002
[18] Cosserat, E., Cosserat, F., 1909. Théorie des corps déformables. A. Herman et Fils, Paris. · JFM 40.0862.02
[19] Cowin, S. C.; Goodman, M. A.: A variational principle for granular materials, Zamm 56, 281-286 (1976) · Zbl 0336.73006 · doi:10.1002/zamm.19760560702
[20] Cowin, S. C.; Leslie, F. M.: On kinetic energy and momenta in Cosserat continua, Zamp 31, 247-260 (1980) · Zbl 0454.73001 · doi:10.1007/BF01590750
[21] Cowin, S. C.; Nunziato, J. W.: Linear elastic materials with voids, J. elasticity 13, 125-147 (1983) · Zbl 0523.73008 · doi:10.1007/BF00041230
[22] Freddi, L.; Morassi, A.; Paroni, R.: Thin-walled beams: a derivation of vlassov theory via \(\Gamma \)-convergence, J. elasticity 86, 263-296 (2007) · Zbl 1107.74029 · doi:10.1007/s10659-006-9094-9
[23] Goodman, M. A.; Cowin, S. C.: A continuum theory for granular materials, Arch. rational mech. Anal. 44, 249-266 (1972) · Zbl 0243.76005 · doi:10.1007/BF00284326
[24] Green, A. E.; Naghdi, P. M.: On thermal effects in the theory of rods, Int. J. Solids struct. 15, 829-853 (1979) · Zbl 0419.73004 · doi:10.1016/0020-7683(79)90053-2
[25] Green, A. E.; Naghdi, P. M.; Wenner, M. L.: On the theory of rods-part II: Developments by direct approach, Proc. royal soc. London 337, 485-507 (1974) · Zbl 0327.73044 · doi:10.1098/rspa.1974.0062
[26] Gurtin, M. E.: The linear theory of elasticity, Handbuch der physik /2, 1-295 (1972)
[27] Hodges, D.H., 2006. Nonlinear Composite Beam Theory. Progress in Astronautics and Aeronautics, no. 213. American Institute of Aeronautics and Astronautics Inc., Reston.
[28] Ieşan, D.: Classical and generalized models of elastic rods, (2009) · Zbl 1177.74001
[29] Ieşan, D., 2010. Deformation of porous Cosserat elastic bars. Int. J. Solids Struct., doi:10.1016/j.ijsolstr.2010.10.022, in press.
[30] Ieşan, D.; Scalia, A.: On the deformation of functionally graded porous elastic cylinders, J. elasticity 87, 147-159 (2007) · Zbl 1151.74348 · doi:10.1007/s10659-007-9101-9
[31] Jenkins, J. T.: Static equilibrium of granular materials, J. appl. Mech. 42, 603-606 (1975)
[32] Lembo, M.; Podio-Guidugli, P.: Internal constraints, reactive stresses, and the Timoshenko beam theory, J. elasticity 65, 131-148 (2001) · Zbl 1043.74028 · doi:10.1023/A:1016109822140
[33] Love, A. E. H.: A treatise in the mathematical theory of elasticity, (1944) · Zbl 0063.03651
[34] Lurie, A. I.: Theory of elasticity, (2005)
[35] Meunier, N.: Recursive derivation of one-dimensional models from three-dimensional nonlinear elasticity, Math. mech. Solids 13, 172-194 (2008) · Zbl 1175.74046 · doi:10.1177/1081286506075357
[36] Mindlin, R. D.: Microstructure in linear elasticity, Arch. rational mech. Anal. 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[37] Naumenko, K.; Altenbach, H.: Modeling of creep for structural analysis, (2007) · Zbl 1183.74298
[38] Nunziato, J. W.; Cowin, S. C.: A nonlinear theory of elastic materials with voids, Arch. rational mech. Anal. 72, 175-201 (1979) · Zbl 0444.73018 · doi:10.1007/BF00249363
[39] Podio-Guidugli, P., 2008. Validation of classical beam and plate models by variational convergence. In: Jaiani, G., Podio-Guidugli, P. (Eds.), IUTAM Symposium on Relations of Shell, Plate, Beam, and 3D Models, IUTAM Bookseries, vol. 9. Springer Science+Business Media B.V., pp. 177 – 188. · Zbl 1208.74076 · doi:10.1007/978-1-4020-8774-5_16
[40] Puri, P.; Cowin, S. C.: Plane waves in linear elastic materials with voids, J. elasticity 15, 167-183 (1985) · Zbl 0564.73027 · doi:10.1007/BF00041991
[41] Rubin, M. B.: Cosserat theories: shells, rods, and points, (2000) · Zbl 0984.74003
[42] Sprekels, J.; Tiba, D.: The control variational approach for differential systems, SIAM J. Control optim. 47, 3220-3226 (2009) · Zbl 1198.74042 · doi:10.1137/070710561
[43] Svetlitsky, V. A.: Statics of rods, (2000) · Zbl 0967.74002
[44] Tiba, D.; Vodak, R.: A general asymptotic model for Lipschitzian curved rods, Adv. math. Sci. appl. 15, 137-198 (2005) · Zbl 1085.74026
[45] Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic beams, Philos. magaz. 41, 744-746 (1921)
[46] Toupin, R. A.: Theories of elasticity with couple stress, Arch. rational mech. Anal. 17, 85-112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
[47] Trabucho, L.; Viaño, J. M.: Mathematical modelling of rods, Handbook of numerical analysis 4, 487-974 (1996) · Zbl 0873.73041
[48] White, J. E.: Biot – gardner theory of extensional waves in porous rods, Geophysics 51, 742-745 (1986)
[49] Yu, W.; Hodges, D. H.; Volovoi, V.; Cesnik, C. E.: On Timoshenko-like modeling of initially curved and twisted composite beams, Int. J. Solids struct. 39, 5101-5121 (2002) · Zbl 1087.74581 · doi:10.1016/S0020-7683(02)00399-2
[50] Zhilin, P. A.: Mechanics of deformable directed surfaces, Int. J. Solids struct. 12, 635-648 (1976)
[51] Zhilin, P. A.: Nonlinear theory of thin rods, Instit. problems mech. Eng 2, 227-249 (2006)
[52] Zhilin, P. A.: Applied mechanics-foundations of shell theory (in russian), (2006)
[53] Zhilin, P. A.: Applied mechanics-theory of thin elastic rods (in russian), (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.