zbMATH — the first resource for mathematics

The application of homotopy analysis method to nonlinear equations arising in heat transfer. (English) Zbl 1236.80010
Summary: Here, the homotopy analysis method (HAM), which is a powerful and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations, is compared with the perturbation and numerical and homotopy perturbation method (HPM) in the heat transfer filed. The homotopy analysis method contains the auxiliary parameter \(\hbar\), which provides us with a simple way to adjust and control the convergence region of solution series.

80M25 Other numerical methods (thermodynamics) (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Dordrecht · Zbl 0802.65122
[2] Ayub, M.; Rasheed, A.; Hayat, T., Int. J. eng. sci., 41, 2091, (2003)
[3] Cole, J.D., Perturbation methods in applied mathematics, (1968), Blaisdell Waltham, MA · Zbl 0162.12602
[4] Ganji, D.D., Phys. lett. A, 355, 337, (2006)
[5] Hayat, T.; Khan, M., Nonlinear dynam., 42, 395, (2005)
[6] Hayat, T.; Khan, M.; Ayub, M., Z. angew. math. phys., 56, 1012, (2005)
[7] He, J.H., Appl. math. comput., 156, 527, (2004)
[8] He, J.H., Int. J. mod. phys. B, 20, 1141, (2006)
[9] He, J.H., Phys. lett. A, 350, 87, (2006)
[10] Karmishin, A.V.; Zhukov, A.I.; Kolosov, V.G., Methods of dynamics calculation and testing for thin-walled structures, (1990), Mashinostroyenie Moscow
[11] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[12] Liao, S.J., Int. J. non-linear mech., 34, 759, (1999)
[13] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[14] Liao, S.J., J. fluid mech., 488, 189, (2003)
[15] Liao, S.J., Appl. math. comput., 147, 499, (2004)
[16] Liao, S.J., Int. J. heat mass transfer, 48, 2529, (2005)
[17] Liao, S.J., Appl. math. comput., 169, 1186, (2005)
[18] Lyapunov, A.M., General problem on stability of motion, (1992), Taylor & Francis London, (English translation) · Zbl 0786.70001
[19] Nayfeh, A.H., Perturbation methods, (2000), Wiley New York · Zbl 0375.35005
[20] Sajid, M.; Hayat, T.; Asghar, S., Phys. lett. A, 355, 18, (2006)
[21] Siddiquia, A.M.; Mahmoodb, R.; Ghorib, Q.K., Phys. lett. A, 352, 404, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.