×

zbMATH — the first resource for mathematics

Radiative corrections in the Boulatov-Ooguri tensor model: the 2-point function. (English) Zbl 1236.81164
Summary: The Boulatov-Ooguri tensor model generates a sum over spacetime topologies for the \(D\)-dimensional BF theory. We study here the quantum corrections to the propagator of the theory. In particular, we find that the radiative corrections at the second order in the coupling constant yield a mass renormalization. They also exhibit a divergence which cannot be balanced with a counter-term in the initial action, and which usually corresponds to the wave-function renormalization.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Boulatov, D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992). arXiv:hep-th/9202074 · Zbl 1020.83539 · doi:10.1142/S0217732392001324
[2] Ooguri, H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799 (1992). arXiv:hep-th/9205090 · Zbl 0968.57501 · doi:10.1142/S0217732392004171
[3] Freidel, L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769 (2005). arXiv:hep-th/0505016 · Zbl 1100.83010 · doi:10.1007/s10773-005-8894-1
[4] Oriti, D.: The group field theory approach to quantum gravity. arXiv:gr-qc/0607032 (2006)
[5] Oriti, D. (ed.): Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter. Cambridge Univ. Press., Cambridge (2009) · Zbl 1168.83002
[6] Oriti, D.: The group field theory approach to quantum gravity: some recent results. arXiv:0912.2441 [hep-th] (2009)
[7] Oriti, D., Tlas, T.: Encoding simplicial quantum geometry in group field theories. Class. Quantum Gravity 27, 135018 (2010). arXiv:0912.1546 [gr-qc] · Zbl 1195.83046
[8] Di Mare, A., Oriti, D.: Emergent matter from 3d generalized group field theories. Class. Quantum Gravity 27, 145006 (2010). arXiv:1001.2702 [gr-qc] · Zbl 1195.83077
[9] Baratin, A., Oriti, D.: Group field theory with non-commutative metric variables. Phys. Rev. Lett. 105, 221302 (2010). arXiv:1002.4723 [hep-th] · doi:10.1103/PhysRevLett.105.221302
[10] Girelli, F., Livine, E.R.: A deformed Poincare invariance for group field theories. Class. Quantum Gravity 27, 245018 (2010). arXiv:1001.2919 [gr-qc] · Zbl 1206.83074 · doi:10.1088/0264-9381/27/24/245018
[11] Baratin, A., Girelli, F., Oriti, D.: Diffeomorphisms in group field theories. arXiv:1101.0590 [hep-th] (2011)
[12] Oriti, D., Sindoni, L.: Towards classical geometrodynamics from group field theory hydrodynamics. arXiv:1010.5149 [gr-qc] (2010)
[13] Freidel, L., Gurau, R., Oriti, D.: Group field theory renormalization–the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009). arXiv:0905.3772 [hep-th] · doi:10.1103/PhysRevD.80.044007
[14] Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behavior of three-dimensional group field theory. Class. Quantum Gravity 26, 185012 (2009). arXiv:0906.5477 [hep-th] · Zbl 1176.83066 · doi:10.1088/0264-9381/26/18/185012
[15] Ben Geloun, J., Magnen, J., Rivasseau, V.: Bosonic colored group field theory. Eur. Phys. J. C 70, 1119 (2010). arXiv:0911.1719 [hep-th] · Zbl 1195.81093 · doi:10.1140/epjc/s10052-010-1487-z
[16] Ben Geloun, J., Krajewski, T., Magnen, J., Rivasseau, V.: Linearized group field theory and power counting theorems. Class. Quantum Gravity 27, 155012 (2010). arXiv:1002.3592 [hep-th] · Zbl 1195.81093 · doi:10.1088/0264-9381/27/15/155012
[17] Bonzom, V., Smerlak, M.: Bubble divergences from twisted cohomology. arXiv:1008.1476 [math-ph] (2010) · Zbl 1197.81180
[18] Bonzom, V., Smerlak, M.: Bubble divergences from cellular cohomology. Lett. Math. Phys. 93, 295 (2010). arXiv:1004.5196 [gr-qc] · Zbl 1197.81180 · doi:10.1007/s11005-010-0414-4
[19] Krajewski, T., Magnen, J., Rivasseau, V., Tanasa, A., Vitale, P.: Quantum corrections in the group field theory formulation of the EPRL/FK models. Phys. Rev. D 82, 124069 (2010). arXiv:1007.3150 [gr-qc] · doi:10.1103/PhysRevD.82.124069
[20] Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett. 92, 60008 (2010). arXiv:1008.0354 [hep-th] · doi:10.1209/0295-5075/92/60008
[21] Gurau, R.: The 1/N expansion of colored tensor models. arXiv:1011.2726 [gr-qc] (2010)
[22] Gurau, R.: Colored group field theory. arXiv:0907.2582 [hep-th] (2009) · Zbl 1214.81170
[23] Gurau, R.: Topological graph polynomials in colored group field theory. Ann. Henri PoincarĂ© 11, 565 (2010). arXiv:0911.1945 [hep-th] · Zbl 1208.81153 · doi:10.1007/s00023-010-0035-6
[24] Gurau, R.: Lost in translation: topological singularities in group field theory. Class. Quantum Gravity 27, 235023 (2010). arXiv:1006.0714 [hep-th] · Zbl 1205.83022 · doi:10.1088/0264-9381/27/23/235023
[25] Caravelli, F.: A simple proof of orientability in the colored Boulatov model. arXiv:1012.4087 [math-ph] (2010)
[26] Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141, 153–209 (1991) · Zbl 0762.53063 · doi:10.1007/BF02100009
[27] Forman, R.: Small volume limits of 2-d Yang-Mills. Commun. Math. Phys. 151, 39–52 (1993) · Zbl 0778.53024 · doi:10.1007/BF02096747
[28] Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. World Scientific, Singapore (1988) · Zbl 0725.00003
[29] Freidel, L., Louapre, D.: Ponzano-Regge model revisited. I: Gauge fixing, observables and interacting spinning particles. Class. Quantum Gravity 21, 5685–5726 (2004). arXiv:hep-th/0401076 · Zbl 1060.83013 · doi:10.1088/0264-9381/21/24/002
[30] Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton Univ. Press, Princeton (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.