Lee, S. M.; Kwon, O. M.; Park, Ju H. A novel delay-dependent criterion for delayed neural networks of neutral type. (English) Zbl 1236.92007 Phys. Lett., A 374, No. 17-18, 1843-1848 (2010). Summary: This Letter considers a robust stability analysis method for delayed neural networks of neutral type. By constructing a new Lyapunov functional, a novel delay-dependent criterion for the stability is derived in terms of LMIs (linear matrix inequalities). A less conservative stability criterion is derived by using nonlinear properties of the activation function of the neural networks. Two numerical examples are illustrated to show the effectiveness of the proposed method. Cited in 34 Documents MSC: 92B20 Neural networks for/in biological studies, artificial life and related topics 68T05 Learning and adaptive systems in artificial intelligence 15A45 Miscellaneous inequalities involving matrices Keywords:stability; neutral delays; LMIs PDF BibTeX XML Cite \textit{S. M. Lee} et al., Phys. Lett., A 374, No. 17--18, 1843--1848 (2010; Zbl 1236.92007) Full Text: DOI OpenURL References: [1] Ramesh, M.; Narayanan, S., Chaos solitons fractals, 12, 2395, (2001) · Zbl 1004.37067 [2] Chua, L.O.; Yang, L., IEEE trans. circuit syst., 35, 1257, (1998) [3] Cao, J., Int. J. syst. sci., 31, 1313, (2001) [4] Cao, J., Phys. lett. A, 261, 303, (1999) [5] Demidenko, S.; Piuri, V., Neurocomputing, 48, 879, (2002) [6] Park, J.H.; Kwon, O.M., Modern phys. lett. B, 23, 1743, (2009) [7] Arik, S., IEEE trans. circuits syst., 49, 1211, (2002) [8] Park, J.H., Appl. math. comput., 181, 200, (2006) [9] Singh, V., Appl. math. comput., 215, 3124, (2009) [10] Park, Ju H.; Kwon, O.M., Chaos solitons fractals, 41, 1174, (2009) [11] Zhang, Q.; Wei, X.P.; Xu, J., Nonlinear anal.: real world appl., 8, 997, (2007) [12] Lou, X.Y.; Cui, B.T., Neurocomputing, 70, 2566, (2007) [13] Chen, Y.; Wu, Y., Neurocomputing, 72, 1065, (2009) [14] Xu, S.; Lam, J., Neural netw., 19, 76, (2006) [15] Li, T.; Guo, L.; Sun, C.; Lin, C., IEEE trans. neural netw., 19, 726, (2008) [16] Feng, J.; Xu, S.; Zou, Y., Neurocomputing, 72, 2576, (2009) [17] Park, Ju.H.; Kwon, O.M.; Lee, S.M., Appl. math. comput., 196, 236, (2008) [18] Gopalsamy, K., Stability and oscillations in delay differential equations of population dynamics, (1992), Kluwer Academic Publishers Boston · Zbl 0752.34039 [19] Bellen, A.; Guglielmi, N.; Ruehli, A.E., IEEE trans. circuits syst. regul. pap., 76, 212, (1999) [20] Brayton, R.K., IBM J. res. dev., 12, 431, (1968) [21] Niculescu, S.I.; Brogliato, B., Eur. J. control., 5, 279, (1999) [22] Gu, K.; Kharitonov, V.L.; Chen, J., Stability of time-delay systems, (2003), Birkhäuser Boston · Zbl 1039.34067 [23] Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA · Zbl 0816.93004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.