×

Fractional variational iteration method and its application. (English) Zbl 1237.34007

Summary: Fractional differential equations have been investigated by variational iteration method. However, the previous works avoid the term of fractional derivative and handle them as a restricted variation. We propose herein a fractional variational iteration method with modified Riemann-Liouville derivative which is more efficient to solve the fractional differential equations.

MSC:

34A08 Fractional ordinary differential equations
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
39B12 Iteration theory, iterative and composite equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, J.H., Comput. methods appl. mech. eng., 167, 1-2, 57, (1998)
[2] He, J.H., Comput. methods appl. mech. eng., 167, 1-2, 69, (1998)
[3] He, J.H., Int. J. nonlinear mech., 34, 4, 699, (1999)
[4] He, J.H., Appl. math. comput., 114, 2-3, 115, (2000)
[5] Wazwaz, A.M., Comput. math. appl., 41, 10-11, 1237, (2001)
[6] Draganescu, G.E.; Capalnasan, V., Int. J. nonlinear sci., 4, 3, 219, (2003)
[7] Draganescu, G.E.; Cofan, N.; Rujan, D.L., J. optoelectron. adv. mater., 7, 2, 877, (2005)
[8] Abdou, M.A.; Soliman, A.A., Physica D, 211, 1-2, 1, (2005)
[9] Abdou, M.A.; Soliman, A.A., J. comput. appl. math., 181, 2, 245, (2005)
[10] Abulwafa, E.M.; Abdou, M.A.; Mahmoud, A.A., Chaos solitons fractals, 29, 2, 313, (2006)
[11] Soliman, A.A., Math. comput. simulat., 70, 2, 119, (2005)
[12] Momani, S.; Odibat, Z., Phys. lett. A, 355, 4-5, 271, (2006)
[13] Odibat, Z.M.; Momani, S., Int. J. nonlinear sci., 7, 1, 27, (2006)
[14] He, J.H.; Wu, G.C.; Austin, F., Nonlinear sci. lett. A, 1, 1, 1, (2010)
[15] Jumarie, G., Int. J. syst. sci., 6, 1113, (1993)
[16] Jumarie, G., Math. comput. model., 44, 231, (2006)
[17] Jumarie, G., Appl. math. lett., 22, 1659, (2009)
[18] Jumarie, G., Comput. math. appl., 51, 1367, (2006)
[19] Wu, G.C.; He, J.H., Nonlinear sci. lett. A, 1, 3, 281, (2010)
[20] Roman, H.E.; Alemany, P.A., J. phys. A - math. gen., 27, 3407, (1994)
[21] Fujita, Y., Osaka J. math., 27, 2, 309, (1990)
[22] Fujita, Y., Osaka J. math., 27, 4, 797, (1990)
[23] Oldham, K.B.; Spanier, J., The fractional calculus, (1999), Academic Press New York · Zbl 0428.26004
[24] Gorenflo, R.; Mainardi, F., Fractional calculus appl. anal., 1, 167, (1998) · Zbl 0946.60039
[25] Tadjeran, C.; Meerschaert, M.M.; Scheffler, H.P., J. comput. phys., 213, 205, (2006)
[26] Mainardi, F., Chaos solitons fractals, 7, 9, 1461, (1996)
[27] Mainardi, F., Appl. math. lett., 9, 6, 23, (1996)
[28] Agarwal, O.P., Nonlinear dynam., 29, 145, (2002)
[29] Al-Khaled, K.; Momani, S., Appl. math. comput., 165, 2, 473, (2005)
[30] Ozdemir, N.; Karadeniz, D., Phys. lett. A, 372, 38, 5968, (2008)
[31] Das, S., Comput. math. appl., 57, 3, 483, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.