×

An integral version of Ćirić’s fixed point theorem. (English) Zbl 1237.54059

Summary: We establish a new fixed point theorem for mappings satisfying a general contractive condition of integral type. The presented theorem generalizes the well known Ćirić’s fixed point theorem [Lj. B. Ćirić, Publ. Inst. Math., Nouv. Sér. 12(26), 19–26 (1971; Zbl 0234.54029)]. Some examples and applications are given.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
54E50 Complete metric spaces

Citations:

Zbl 0234.54029
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] I. Altun, D. Türkoğlu and B. E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type. Fixed Point Theory Appl. 2007 (2007), article ID 17301, 9 pages. · Zbl 1153.54022
[2] Banach S.: Sur les opérations dans les ensembles absraites et leurs applications. Fund. Math. 3, 133–181 (1922) · JFM 48.0201.01
[3] Boyd D.W., Wong J.S.: On nonlinear contractions. Proc. Amer. Math. Soc. 20, 458–464 (1969) · Zbl 0175.44903
[4] Branciari A.: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29, 531–536 (2002) · Zbl 0993.54040
[5] Ćirić Lj.B.: Generalized contractions and fixed point theorems. Publ. Inst. Math. 12, 19–26 (1971) · Zbl 0234.54029
[6] Ćirić Lj.B.: Fixed points for generalized multi-valued mappings. Mat. Vesnik. 9, 265–272 (1972) · Zbl 0258.54043
[7] Ćirić Lj.B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45, 267–273 (1974) · Zbl 0291.54056
[8] Ćirić Lj.B.: On a family of contractive maps and fixed points. Publ. Inst. Math. 17, 45–51 (1974) · Zbl 0306.54057
[9] Ćirić Lj.B.: Coincidence and fixed points for maps on topological spaces. Topol. Appl. 154, 3100–3106 (2007) · Zbl 1132.54024
[10] Ćirić Lj.B.: Fixed point theorems for multi-valued contractions in complete metric spaces. J. Math. Anal. Appl. 348, 499–507 (2008) · Zbl 1213.54063
[11] Ćirić Lj.B.: Non-self mappings satisfying nonlinear contractive condition with applications. Nonlinear Anal. 71, 2927–2935 (2009) · Zbl 1166.47052
[12] Jungck G.: Commuting mappings and fixed points. Amer. Math. Monthly 73, 261–263 (1976) · Zbl 0321.54025
[13] Jungck G., Rhoades B.E.: Fixed point theorems for occasionally weakly compatible mappings. Fixed Point Theory 7, 286–296 (2006) · Zbl 1118.47045
[14] Meir A., Keeler E.: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326–329 (1969) · Zbl 0194.44904
[15] Rhoades B.E.: Two fixed point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 63, 4007–4013 (2003) · Zbl 1052.47052
[16] Samet B.: A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type. Int. Journal of Math. Anal. 3, 1265–1271 (2009) · Zbl 1196.54084
[17] B. Samet and H. Yazidi, An extension of Banach fixed point theorem for mappings satisfying a contractive condition of integral type. J. Nonlinear Sci. Appl., in press. · Zbl 1231.54025
[18] T. Suzuki, Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007 (2007), article ID 39281, 6 pages. · Zbl 1142.54019
[19] Vetro C.: On Branciari’s theorem for weakly compatible mappings. Appl. Math. Lett. 23, 700–705 (2010) · Zbl 1251.54058
[20] Vijayaraju P., Rhoades B.E., Mohanraj R.: A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 15, 2359–2364 (2005) · Zbl 1113.54027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.