×

Modeling seasonal rabies epidemics in China. (English) Zbl 1237.92056

Bull. Math. Biol. 74, No. 5, 1226-1251 (2012); erratum ibid. 75, No. 1, 206-211 (2013).
Summary: Human rabies, an infection of the nervous system, is a major public-health problem in China. In the last 60 years (1950-2010) there had been 124,255 reported human rabies cases, an average of 2,037 cases per year. However, the factors and mechanisms behind the persistence and prevalence of human rabies have not become well understood. The monthly data of human rabies cases reported by the Chinese Ministry of Health exhibits a periodic pattern on an annual base. The cases in the summer and autumn are significantly higher than in the spring and winter. Based on this observation, we propose a susceptible, exposed, infectious, and recovered (SEIRS) model with periodic transmission rates to investigate the seasonal rabies epidemics. We evaluate the basic reproduction number \(R_{0}\), analyze the dynamical behavior of the model, and use the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health. We also carry out some sensitivity analysis of the basic reproduction number \(R_{0}\) in terms of various model parameters. Moreover, we demonstrate that it is more reasonable to regard \(R_{0}\) rather than the average basic reproduction number \({\bar R}_{0}\) or the basic reproduction number \({\hat R}_{0}\) of the corresponding autonomous system as a threshold for the disease. Finally, our studies show that human rabies in China can be controlled by reducing the birth rate of dogs, increasing the immunization rate of dogs, enhancing public education and awareness about rabies, and strengthening supervision of pupils and children in the summer and autumn.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D23 Global stability of solutions to ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] AnshanCDC (2011). Rabies knowledge for 20 questions. http://www.ascdc.com.cn/newscontent.asp?lsh=5.
[2] Bacaer, N.; Guernaoui, S., The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53, 421-436 (2006) · Zbl 1098.92056 · doi:10.1007/s00285-006-0015-0
[3] Bai, Z.; Zhou, Y., Threshold dynamics of a Bacillary Dysentery model with seasonal fluctuation, Discrete Contin. Dyn. Syst., Ser. B, 15, 1, 1-14 (2011) · Zbl 1207.92039 · doi:10.3934/dcdsb.2011.15.1
[4] Bjornstad, O. N.; Finkenstadt, B. F.; Grenfell, B. T., Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72, 2, 169-184 (2002)
[5] CDC (2010a). Rabies—How is rabies transmitted? http://www.cdc.gov/rabies/transmission/index.html.
[6] CDC (2010b). Rabies—What are the signs and symptoms of rabies? http://www.cdc.gov/rabies/symptoms/index.html.
[7] ChinaCDC (2011). Rabies answer of knowledge and hot question. http://www.chinacdc.cn/jkzt/crb/kqb/kqbzstd/201109/t20110922_52966.htm.
[8] Chowell, G.; Ammon, C.; Hengartner, N.; Hyman, J., Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions, J. Theor. Biol., 241, 193-204 (2006) · Zbl 1447.92408 · doi:10.1016/j.jtbi.2005.11.026
[9] Diekmann, O.; Heesterbeek, J. A. P.; Roberts, M. G., On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[10] Diekmann, O.; Heesterbeek, J. A. P.; Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 873-885 (2010) · doi:10.1098/rsif.2009.0386
[11] Dowell, S. F., Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7, 3, 369-374 (2001)
[12] Dushoff, J.; Plotkin, J. B.; Levin, S. A.; Earn, D. J. D., Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci. USA, 101, 16915-16916 (2004) · doi:10.1073/pnas.0407293101
[13] Earn, D.; Rohani, P.; Bolker, B.; Grenfell, B., A simple model for complex dynamical transitions in epidemics, Science, 287, 667-670 (2000) · doi:10.1126/science.287.5453.667
[14] Greenhalgh, D.; Moneim, I. A., SIRS epidemic model and simulations using different types of seasonal contact rate, Syst. Anal. Model. Simul., 43, 5, 573-600 (2003) · Zbl 1057.92046 · doi:10.1080/023929021000008813
[15] Hampson, K.; Dushoff, J.; Bingham, J.; Bruckner, G.; Ali, Y.; Dobson, A., Synchronous cycles of domestic dog rabies in Sub-Saharan Africa and the impact of control effort, Proc. Natl. Acad. Sci. USA, 104, 7717-7722 (2007) · doi:10.1073/pnas.0609122104
[16] Hou, Q.; Jin, Z.; Ruan, S., Dynamics of rabies epidemics and the impact of control efforts in Guangdong Province, China, J. Theor. Biol., 300, 39-47 (2012) · Zbl 1397.92638 · doi:10.1016/j.jtbi.2012.01.006
[17] Liu, J., Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear Dyn., 64, 1-2, 89-95 (2010) · Zbl 1280.92062
[18] Liu, L.; Zhao, X.; Zhou, Y., A Tuberculosis model with seasonality, Bull. Math. Biol., 72, 931-952 (2010) · Zbl 1191.92027 · doi:10.1007/s11538-009-9477-8
[19] London, W.; Yorke, J. A., Recurrent outbreaks of measles, chickenpox and mumps. i. Seasonal variation in contact rates, Am. J. Epidemiol., 98, 6, 453-468 (1973)
[20] Ma, J.; Ma, Z., Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3, 1, 161-172 (2006) · Zbl 1089.92048 · doi:10.3934/mbe.2006.3.161
[21] MOHC (2009). Ministry of health of the People’s Republic of China, the status of prevention and control of rabies in China (Zhongguo Kuangquanbing Fangzhi Xiankuang), 27 September 2009. http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohbgt/s9513/200909/42937.htm.
[22] MOHC (2011). Ministry of health of the People’s Republic of China, bulletins. http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohbgt/pwsbgb/index.htm.
[23] Moneim, I., The effect of using different types of periodic contact rate on the behaviour of infectious diseases: A simulation study, Comput. Biol. Med., 37, 1582-1590 (2007) · doi:10.1016/j.compbiomed.2007.02.007
[24] Nakata, Y.; Kuniya, T., Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 363, 230-237 (2010) · Zbl 1184.34056 · doi:10.1016/j.jmaa.2009.08.027
[25] NBSC (2009). National Bureau of Statistics of China, China Demographic Yearbook of 2009. http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm.
[26] Perko, L., Differential equations and dynamical systems (2000), New York: Springer, New York
[27] Ruan, S.; Wu, J.; Cantrell, S.; Cosner, C.; Ruan, S., Modeling spatial spread of communicable diseases involving animal hosts, Spatial ecology, 293-316 (2009), Boca Raton: Chapman Hall/CRC, Boca Raton · Zbl 1183.92074
[28] Schenzle, D., An age-structured model of pre- and pose-vaccination measles transmission, Math. Med. Biol., 1, 169-191 (1984) · Zbl 0611.92021 · doi:10.1093/imammb/1.2.169
[29] Schwartz, I., Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30, 473-491 (1992) · Zbl 0745.92026 · doi:10.1007/BF00160532
[30] Schwartz, I.; Smith, H., Infinite subharmonic bifurcation in an SIER epidemic model, J. Math. Biol., 18, 233-253 (1983) · Zbl 0523.92020 · doi:10.1007/BF00276090
[31] Smith, H., Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17, 179-190 (1983) · Zbl 0529.92018 · doi:10.1007/BF00305758
[32] Smith, H.; Waltman, P., The theory of the chemostat (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0860.92031
[33] Song, M.; Tang, Q.; Wang, D.-M.; Mo, Z.-J.; Guo, S.-H.; Li, H.; Tao, X.-Y.; Rupprecht, C. E.; Feng, Z.-J.; Liang, G.-D., Epidemiological investigations of human rabies in China, BMC Infect. Dis., 9, 1, 210 (2009) · doi:10.1186/1471-2334-9-210
[34] Stafford, M.; Corey, L.; Cao, Y.; Daar, E.; Ho, D.; Perelson, A., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203, 285-301 (2000) · doi:10.1006/jtbi.2000.1076
[35] Thieme, H., Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, 755-763 (1992) · Zbl 0761.34039 · doi:10.1007/BF00173267
[36] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 18, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[37] Wang, W.; Zhao, X., Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20, 699-717 (2008) · Zbl 1157.34041 · doi:10.1007/s10884-008-9111-8
[38] Wesley, C.; Allen, L., The basic reproduction number in epidemic models with periodic demographics, J. Biol. Dyn., 3, 2-3, 116-129 (2009) · Zbl 1342.92287 · doi:10.1080/17513750802304893
[39] WHO (2010a). Human rabies. http://www.who.int/rabies/human/en/.
[40] WHO (2010b). Rabies. http://www.who.int/rabies/en/. · Zbl 1272.97062
[41] Williams, B., Infectious disease persistence when transmission varies seasonally, Math. Biosci., 145, 77-88 (1997) · Zbl 0896.92024 · doi:10.1016/S0025-5564(97)00039-4
[42] Zhang, F.; Zhao, X., A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325, 496-516 (2007) · Zbl 1101.92046 · doi:10.1016/j.jmaa.2006.01.085
[43] Zhang, J.; Jin, Z.; Sun, G.-Q.; Zhou, T.; Ruan, S., Analysis of rabies in China: Tranmission dynamics and control, PLoS ONE, 6, 7, e20891 (2011) · doi:10.1371/journal.pone.0020891
[44] Zhang, J., Jin, Z., Sun, G.-Q., Sun, X.-D., & Ruan, S. (2012). Spatial spread of rabies in China. J. Appl. Anal. Comput., 2 (to appear). · Zbl 1304.92126
[45] Zhao, X.-Q., Dynamical systems in population biology (2003), New York: Springer, New York · Zbl 1023.37047
[46] Zinsstag, J.; Durr, S.; Penny, M.; Mindekem, R.; Roth, F.; Gonzalez, S.; Naissengar, S.; Hattendorf, J., Transmission dynamic and economics of rabies control in dogs and humans in an African city, Proc. Natl. Acad. Sci. USA, 106, 14996-15001 (2009) · doi:10.1073/pnas.0904740106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.