×

zbMATH — the first resource for mathematics

Robust synchronization of fractional-order unified chaotic systems via linear control. (English) Zbl 1238.93045
Summary: A new scheme for accomplishing synchronization between two fractional-order unified chaotic systems is proposed. The scheme does not require that the nonlinear dynamics of the synchronization error system must be eliminated. Moreover, the parameter of the systems does not have to be known. A controller is a linear feedback controller, which is simple in implementation. It is designed based on an LMI condition. The LMI condition guarantees that the synchronization between the slave system and the master system is achieved. Numerical simulations are performed to demonstrate the effectiveness of the proposed scheme.

MSC:
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations and fractional differential inclusions
34H10 Chaos control for problems involving ordinary differential equations
93A13 Hierarchical systems
93B52 Feedback control
37N35 Dynamical systems in control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[2] Cafagna, D., Fractional calculus: a mathematical tool from the past for present engineers, IEEE industrial electronics magazine, 1, 35-40, (2007)
[3] Heaviside, O., Electromagnetic theory, (1971), Chelsea New York · JFM 30.0801.03
[4] Ichise, M.; Nagayanagi, Y.; Kojima, T., An analog simulation of noninteger order transfer functions for analysis of electrode process, Journal of electroanalytical chemistry, 33, 253-265, (1971)
[5] Sun, H.H.; Abdelwahad, A.A.; Onaral, B., Linear approximation of transfer function with a pole of fractional order, IEEE transactions on automatic control, 29, 441-444, (1984) · Zbl 0532.93025
[6] Koeller, R.C., Application of fractional calculus to the theory of viscoelasticity, Journal of applied mechanics, 51, 299-307, (1984) · Zbl 0544.73052
[7] Ahmad, W.M.; Sprott, J.C., Chaos in fractional-oder autonomous nonlinear systems, Chaos, solitons and fractals, 16, 339-351, (2003) · Zbl 1033.37019
[8] Gao, X.; Yu, J., Chaos in the fractional order periodically forced complex duffing’s oscillators, Chaos, solitons and fractals, 26, 1125-1133, (2005)
[9] Ge, Z.-M.; Ou, C.-Y., Chaos in a fractional order modified Duffing system, Chaos, solitons and fractals, 34, 262-291, (2007) · Zbl 1132.37324
[10] Li, C.P.; Peng, G.J., Chaos in chen’s system with a fractional order, Chaos, solitons and fractals, 20, 443-450, (2004) · Zbl 1060.37026
[11] Li, C.; Chen, G., Chaos in the fractional order Chen system and its control, Chaos, solitons and fractals, 22, 549-554, (2004) · Zbl 1069.37025
[12] Deng, W.H.; Li, C.P., Chaos synchronization of the fractional Lü system, Physica A, 353, 61-72, (2005)
[13] Deng, W.; Li, C., The evolution of chaotic dynamics for fractional unified system, Physics letters A, 372, 401-407, (2008) · Zbl 1217.37026
[14] Wu, X.; Li, J.; Chen, G., Chaos in the fractional order unified system and its synchronization, Journal of the franklin institute, 345, 392-401, (2008) · Zbl 1166.34030
[15] Daftardar-Gejji, V.; Bhalekar, S., Chaos in fractional ordered Liu system, Computers and mathematics with applications, 59, 1117-1127, (2010) · Zbl 1189.34081
[16] Wang, F.; Liu, C., Synchronization of unified chaotic system based on passive control, Physica D, 225, 55-60, (2008) · Zbl 1119.34332
[17] Njah, A.N.; Vincent, U.E., Synchronization and anti-synchronization of chaos in an extended bonhöffer – van der Pol oscillator using active control, Journal of sound and vibration, 319, 41-49, (2009)
[18] Kuntanapreeda, S., Chaos synchronization of unified chaotic systems via LMI, Physics letters A, 373, 2837-2840, (2009) · Zbl 1233.93047
[19] Haeri, M.; Tavazoei, M.S.; Naseh, M.R., Synchronization of uncertain chaotic systems using active sliding mode control, Chaos, solitons and fractals, 33, 1230-1239, (2007) · Zbl 1138.93045
[20] Yu, Y., Adaptive synchronization of a unified chaotic system, Chaos, solitons and fractals, 36, 329-333, (2008) · Zbl 1141.93361
[21] Peng, C.-C.; Chen, C.-L., Robust chaotic control of Lorenz system by backstepping design, Chaos, solitons and fractals, 37, 598-608, (2008) · Zbl 1139.93317
[22] Wang, H.; Han, Z.-Z.; Xie, Q.-Y.; Zhang, W., Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Communications in nonlinear science and numerical simulation, 14, 2239-2247, (2009)
[23] Lei, Y.; Yung, K.L.; Xu, Y., Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control, Journal of sound and vibration, 329, 973-979, (2010)
[24] Sangpet, T.; Kuntanapreeda, S., Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains, Journal of sound and vibration, 329, 2490-2496, (2010)
[25] Li, C.P.; Deng, W.H.; Xu, D., Chaos synchronization of Chua system with a fractional order, Physica A, 360, 171-185, (2006)
[26] Yan, J.; Li, C., On chaos synchronization of fractional differential equations, Chaos, solitons and fractals, 32, 725-735, (2007) · Zbl 1132.37308
[27] Bhalekar, S.; Daflardar-Gejji, V., Synchronization of different fractional order chaotic systems using active control, Communications in nonlinear science and numerical simulation, 15, 3536-3546, (2010) · Zbl 1222.94031
[28] Odibat, Z.; Corson, N.; Aziz-Alaoui, M.; Bertelle, C., Synchronization of chaotic fractional-order systems via linear control, International journal of bifurcation and chaos, 20, 81-97, (2010) · Zbl 1183.34095
[29] Asheghan, M.M.; Beheshti, M.T.H.; Tavazoei, M.S., Robust synchronization of perturbed chen’s fractional-order chaotic systems, Communications in nonlinear science and numerical simulation, 16, 1044-1051, (2011) · Zbl 1221.34007
[30] Xin, B.; Chen, T.; Liu, Y., Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control, Communications in nonlinear science and numerical simulation, 16, 4479-4486, (2011) · Zbl 1222.93108
[31] Taghvafard, H.; Erjaee, G.H., Phase and anti-phase synchronization of fractional order chaotic systems via active control, Communications in nonlinear science and numerical simulation, 16, 4079-4088, (2011) · Zbl 1221.65320
[32] Cafagna, D.; Grassi, G., Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems, Nonlinear dynamics, (2011) · Zbl 1243.93047
[33] Zhang, R.; Yang, S., Adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear dynamics, (2011) · Zbl 1242.93030
[34] J.-Q. Xu, Adaptive synchronization of the fractional-order unified chaotic system with uncertain parameters, in: 30th Chinese Control Conference, CCC, 22-24 July 2011, pp. 2423-2428.
[35] Hosseinnia, S.H.; Ghaderi, R.; Ranjbar N., A.; Mahmoudian, M.; Momani, S., Sliding mode synchronization of an uncertain fractional order chaotic system, Computers and mathematics with applications, 59, 1637-1643, (2010) · Zbl 1189.34011
[36] Qi, D.-L.; Wang, Q.; Yang, J., Comparison between two different sliding mode controllers for a fractional-order unified chaotic system, Chinese physics B, 20, 100505-1-100505-9, (2011)
[37] Yin, C.; Zhong, S.; Chen, W., Design of sliding mode controller for a class of fractional-order chaotic systems, Communications in nonlinear science and numerical simulation, 17, 356-366, (2012) · Zbl 1248.93041
[38] Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu, V., Fractional-order systems and controls: fundamentals and applications, (2010), Springer-Verlag London
[39] Caponetto, R.; Dongola, G.; Fortuna, L.; Petráš, I., Fractional order systems: modeling and control applications, (2010), World Scientific Singapore
[40] Sabatier, J.; Moze, M.; Farges, C., LMI stability conditions for fractional order systems, Computers and mathematics with applications, 59, 1594-1609, (2010) · Zbl 1189.34020
[41] Lu, J.G.; Chen, Y.Q., Robust stability and stabilization of fractional-order interval systems with the fractional order \(\alpha\): the \(0 < \alpha < 1\) case, IEEE transactions on automatic control, 55, 152-158, (2010) · Zbl 1368.93506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.