Multiscale damage contact-friction model for periodic masonry walls. (English) Zbl 1239.74007

Summary: A multiscale analysis of periodic masonry walls is developed. In particular, a micromechanical analysis is presented for the unit cell, introducing nonlinear constitutive laws, based on damage and friction models, for the mortar and for the blocks. In order to deduce the overall response of regular masonry arrangements to be used for the multiscale analysis, the Transformation Field Analysis (TFA) homogenization procedure is extended to the case of nonuniform eigenstrain. A multiscale procedure is proposed implementing the nonlinear homogenization technique at Gauss point level, in 2D plane state finite element. A nonlocal integral model is adopted in order to overcome problems due to the localization of strain and damage. Numerical examples of homogenization are carried out, comparing the nonlinear mechanical response of the masonry, obtained by adopting the proposed homogenization technique, with the results recovered by evolutive nonlinear finite element analyses. Moreover, numerical applications regarding the mechanical response of masonry structures are performed in order to validate the efficiency of the multiscale approach. In particular, a comparison with experimental data, available in literature, is presented.


74A60 Micromechanical theories
74M15 Contact in solid mechanics
74E30 Composite and mixture properties
74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI


[1] Addessi, D.; Sacco, E.; Paolone, A., Equivalent Cosserat model for periodic masonry deduced by a nonlinear homogenization TFA procedure, Eur. J. mech. A/solids, 29, 724-737, (2010)
[2] Alfano, G.; Sacco, E., Combining interface damage and friction in a cohesive-zone model, Int. J. numer. methods engrg., 68, 542-582, (2006) · Zbl 1275.74021
[3] Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory, Int. J. solids struct., 32, 137-163, (1995) · Zbl 0868.73010
[4] Anthoine, A., Homogenization of periodic masonry: plane stress, generalized plane strain or 3d modelling?, Commun. numer. methods engrg., 13, 319-326, (1997) · Zbl 0879.73006
[5] Brasile, S.; Casciaro, R.; Formica, G., Multilevel approach for brick masonry walls – part I: A numerical strategy for the nonlinear analysis, Comput. methods appl. mech. engrg., 196, 4934-4951, (2007) · Zbl 1173.74382
[6] Cecchi, A.; Sab, K., Out of plane model for heterogeneous periodic materials: the case of masonry, Eur. J. mech. A/solids, 21, 715-746, (2002) · Zbl 1146.74312
[7] Chaboche, J.; Kruch, L.S.; Maire, J.; Pottier, T., Towards a micromechanics based inelastic and damage modeling of composites, Int. J. plast., 17, 411-439, (2001) · Zbl 0988.74006
[8] De Buhan, P.; De Felice, G., A homogenisation approach to the ultimate strength of brick masonry, J. mech. phys. solids, 457, 1085-1104, (1997) · Zbl 0977.74565
[9] Dvorak, G., Transformation field analysis of inelastic composite materials, Proc. roy. soc. London A, 437, 311-327, (1992) · Zbl 0748.73007
[10] Fish, J.; Shek, K., Multiscale analysis of composite materials and structures, Compos. sci. technol., 60, 2547-2556, (2000)
[11] Gambarotta, L.; Lagomarsino, S., Damage models for the seismic response of brick masonry shear walls – part I: the continuum model and its application, Earthquake engrg. struct. dynam., 26, 423-439, (1997)
[12] Gambarotta, L.; Lagomarsino, S., Damage models for the seismic response of brick masonry shear walls – part II: the mortar joint model and its application, Earthquake engrg. struct. dynam., 26, 441-462, (1997)
[13] Kralj, B.; Pande, G.K.; Middleton, J., On the mechanics of frost damage to brick masonry, Comput. struct., 41, 53-66, (1991)
[14] P.B. Lourenco, Computational strategies for masonry structures, Ph.D. Thesis, Delft University of Technology, Delft University Press, The Netherlands. <http://www.civil.uminho.pt/masonry/Publications/1996a_Lourenco.pdf> ISBN 90-407-1221-2, 1996.
[15] Luciano, R.; Sacco, E., Homogenization technique and damage model for old masonry material, Int. J. solids struct., 34, 3191-3208, (1997) · Zbl 0942.74610
[16] Luciano, R.; Sacco, E., Variational methods for the homogenization of periodic heterogeneous media, Eur. J. mech. A/solids, 17, 599-617, (1998) · Zbl 0929.74084
[17] Luciano, R.; Sacco, E., A damage model for masonry structures, Eur. J. mech. A/solids, 17, 285-303, (1998) · Zbl 0933.74056
[18] Marfia, S.; Sacco, E., Modeling of reinforced masonry elements, Int. J. solids struct., 38, 4177-4198, (2001) · Zbl 0995.74012
[19] T.J. Massart, Multiscale modelling of damage in masonry structures, Ph.D. Thesis, Technische Universiteit Eindhoven, 2003.
[20] Massart, T.J.; Peerlings, R.H.J.; Geers, M.G.D., An enhanced multi-scale approach for masonry wall computations with localization of damage, Int. J. numer. methods engrg., 69, 1022-1059, (2007) · Zbl 1194.74283
[21] Michel, J.; Suquet, P., Nonuniform transformation field analysis, Int. J. solids struct., 40, 6937-6955, (2003) · Zbl 1057.74031
[22] Mistler, M.; Anthoine, A.; Butenweg, C., In-plane and out-of-plane homogenisation of masonry, Comput. struct., 85, 1321-1330, (2007)
[23] Pegon, P.; Anthoine, A., Numerical strategies for solving continuum damage problems with softening: application to the homogenization of masonry, Comput. struct., 64, 623-642, (1997) · Zbl 0919.73004
[24] Pietruszczak, S.; Niu, X., A mathematical description of macroscopic behavior of brick masonry, Int. J. solids struct., 29, 531-546, (1992) · Zbl 0825.73034
[25] Ragueneau, F.; La Borderie, C.; Mazars, J., Damage model for concrete-like materials coupling cracking friction contribution towards structural damping: first uniaxial applications, Mech. cohes.-frict. mater., 5, 607-625, (2000)
[26] T.M.J. Raijmakers, A.T. Vermeltfoort, Deformation controlled tests in masonry shear walls, in: Report B-92-1156, TNO-Bouw, Delft, The Netherlands, 1992 (in Dutch).
[27] Raous, M.; Cangemi, L.; Cocou, M., A consistent model coupling adhesion, friction and unilateral contact, Comput. methods appl. mech. engrg., 177, 383-399, (1999) · Zbl 0949.74008
[28] Sacco, E., A nonlinear homogenization procedure for periodic masonry, Eur. J. mech. A/solids, 28, 209-222, (2009) · Zbl 1156.74360
[29] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1998), Springer-Verlag New York · Zbl 0934.74003
[30] Suquet, P.M., Elements of homogenization for inelastic solid mechanics, () · Zbl 0645.73012
[31] Uva, G.; Salerno, G., Towards a multiscale analysis of periodic masonry brickwork: a FEM algorithm with damage and friction, Int. J. solids struct., 43, 3739-3769, (2006) · Zbl 1121.74445
[32] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (1994), McGraw-Hill London · Zbl 0979.74003
[33] Zucchini, A.; Lourenço, P.B., A micro-mechanical model for the homogenisation of masonry, Int. J. solids struct., 39, 3233-3255, (2002) · Zbl 1049.74754
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.