×

Impulsive consensus problem of second-order multi-agent systems with switching topologies. (English) Zbl 1239.93006

Summary: The paper proposes an impulsive consensus protocol to solve the consensus problem of second-order multi-agent systems with fixed and switching topologies. Some sufficient conditions are obtained for the states of follower agents converging to the state of leader asymptotically. Two numerical simulations are also given to verify the effectiveness of the theoretical analysis.

MSC:

93A14 Decentralized systems
93C85 Automated systems (robots, etc.) in control theory
37N35 Dynamical systems in control
68T42 Agent technology and artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Yu, W.W.; Chen, G.R.; Cao, M., Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica, 46, 1089-1095, (2010) · Zbl 1192.93019
[2] Xiao, Feng; Wang, Long, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE trans automat control, 53, 1804-1816, (2008) · Zbl 1367.93255
[3] Hu, J.; Lin, Y.S., Consensus control for multi-agent systems with double-integrator dynamics and time delays, Iet control theor appl, 4, 109-118, (2010)
[4] Gao, L.X.; Yan, H.J.; Jin, D., Consensus problems in multi-agent systems with double integrator model, Chin phys B, 19, 050520, (2010)
[5] Olfati-Saber, R.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE trans automat control, 49, 1520-1533, (2004) · Zbl 1365.93301
[6] Ren, W.; Beard, R.W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE trans automat control, 50, 655-661, (2005) · Zbl 1365.93302
[7] Jiang, F.C.; Wang, L., Consensus seeking of high-order dynamic multi-agent systems with fixed and switching topologies, Int J control, 83, 404-420, (2010) · Zbl 1184.93008
[8] Yu, W.; Chen, G.; Cao, M.; Kurths, J., Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics, IEEE trans syst man cybern B, 40, 881-891, (2010)
[9] Liu, X.; Chen, T.; Lu, W., Consensus problem in directed networks of multi-agents via nonlinear protocols, Phys lett A, 373, 3122-3127, (2009) · Zbl 1233.34012
[10] Hong, Y.G.; Hu, J.P.; Gao, L., Traching control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 1177-1182, (2006) · Zbl 1117.93300
[11] Lu, X.B.; Qin, B.Z., Adaptive cluster synchronization in complex dynamical networks, Phys lett A, 373, 3650-3658, (2009) · Zbl 1232.05219
[12] Lu, X.Q.; Austin, F.; Chen, S.H., Cluster consensus of second-order multi-agent systems via pinning control, Chin phy B, 19, (2010), 120506
[13] Gu, D.; Wang, Z., Leader-follower flocking: algorithms and experiments, IEEE trans control syst technol, 17, 1211-1219, (2009)
[14] Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE trans automat control, 51, 401-420, (2006) · Zbl 1366.93391
[15] Su, H.; Wang, X.; Lin, Z., Flocking of multi-agents with a virtual leader, IEEE trans automat control, 54, 293-307, (2009) · Zbl 1367.37059
[16] Su, H.; Wang, X.; Yang, W., Flocking in multi-agent systems with multiple virtual leaders, Asian J control, 10, 238-245, (2008)
[17] Savkin, A.V., Coordination collective motion of groups of autonomous mobile robots:analysis of vicsek’s model, IEEE trans automat control, 49, 981-982, (2004) · Zbl 1365.93327
[18] Fax, A.; Murray, R., Information flow and cooperative control of vehicle formations, IEEE trans automat control, 49, 1465-1476, (2004) · Zbl 1365.90056
[19] Hu, J.P.; Hong, Y.G., Leader-following coordination of multi-agent systems with coupling time delays, Physica A, 374, 853-863, (2007)
[20] Hu, J.P.; Feng, G., Distributed tracking control of leader-follower multi-agent systems under noisy measurement, Automatica, 46, 1382-1387, (2010) · Zbl 1204.93011
[21] Lin, P.; Jia, Y.M., Distributed rotating formation control of multi-agent systems, Syst control lett, 59, 587-595, (2010) · Zbl 1201.93010
[22] Wang, X.L.; Hong, Y.G.; Huang, J., A distributed control approach to a robust output regulation problem for multi-agent linear systems, IEEE trans automat control, 55, 2891-2895, (2010) · Zbl 1368.93577
[23] Hong, Y.G.; Chen, G.R.; Bushnell, L., Distributed observers design for leader-following control of multi-agent networks, Automatica, 44, 846-850, (2008) · Zbl 1283.93019
[24] Lin, P.; Jia, Y., Robust H-infinity consensus analysis of a class of second-order multi-agent systems with uncertainty, Iet control theor appl, 4, 487-498, (2010)
[25] Zhang, W.G.; Zeng, D.L.; Guo, Z.K., H-infinity consensus control of a class of second-order multi-agent systems without relative velocity measurement, Chin phys B, 19, (2010), 070518
[26] Xiao, F.; Wang, L.; Chen, J.; Gao, Y.P., Finite-time formation control for multi-agent system, Automatic, 45, 2605-2611, (2009) · Zbl 1180.93006
[27] Zhang, Q.; Chen, S.H.; Guo, W.L., Adaptive consensus problem of leader-follower multi-agent system, Chin phys lett, 27, (2010), 100501 · Zbl 1274.93253
[28] Xu, Y.H.; Zhou, W.N.; Fang, J.A., Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling, Phys lett A, 374, 673-1677, (2010) · Zbl 1236.05190
[29] Zhou, J.; Lu, J.; Lü, J., Adaptive synchronization of an uncertain complex dynamical network, IEEE trans automat control, 51, 652-656, (2006) · Zbl 1366.93544
[30] Zhang, L.P.; Jiang, H.B., Impulsive generalized synchronization for a class of nonlinear discrete chaotic systems, Commun nonlinear sci numer simul, 16, 2027-2032, (2011) · Zbl 1221.93171
[31] Zhang, Q.J.; Lu, J.A.; Zhao, J.C., Impulsive synchronization of general continuous and discrete-time complex dynamical networks, Commun nonlinear sci numer simul, 15, 1063-1070, (2010) · Zbl 1221.93107
[32] Sun, M.; Zeng, C.Y.; Tian, L.X., Linear generalized synchronization between two complex networks, Commun nonlinear sci numer simul, 15, 2162-2167, (2010) · Zbl 1222.93088
[33] Xu, H.; Teo, K.L., Stabilizability of discrete chaotic systems via unified impulsive control, Phys lett A, 374, 235-240, (2009) · Zbl 1235.70138
[34] Liu, B.; Liu, X.; Chen, G.; Wang, H., Robust impulsive synchronization of uncertain dynamical networks, IEEE trans circuits syst I, 52, 1431-1441, (2005) · Zbl 1374.82016
[35] Jiang, H.B.; Bi, Q.S., Impulsive synchronization of networked nonlinear dynamical systems, Phys lett A, 374, 2723-2729, (2010) · Zbl 1237.34101
[36] ZK. Li, Z. Duan, S. Huang, Leader-follower consensus of multi-agent systems. In: Proceedings of the 2009 conference on American Control Conference 2009; St. Louis, Missouri, USA, p.3256-3261.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.