Stochastic quasi-synchronization for delayed dynamical networks via intermittent control. (English) Zbl 1239.93114

Summary: In this paper, we consider the stochastic quasi-synchronization for the delayed networks with parameter mismatches and stochastic perturbation mismatch by using intermittent control. Based on Lyapunov’s stability theory, inequality techniques and the properties of Wiener process, several sufficient conditions are obtained to ensure stochastic quasi-synchronization for delayed networks. Meanwhile, numerical simulations are offered to show the effectiveness of our new results.


93E03 Stochastic systems in control theory (general)
93C73 Perturbations in control/observation systems
93A13 Hierarchical systems
Full Text: DOI


[1] Watts, D.J.; Strogatz, S.H., Collective dynamics of small-world networks, Nature, 393, 440-442, (1998) · Zbl 1368.05139
[2] Barabási, A.L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223
[3] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U., Complex networks: structure and dynamics, Phys rep, 424, 175-308, (2006) · Zbl 1371.82002
[4] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic system, Phys rev lett, 64, 821-824, (1990) · Zbl 0938.37019
[5] Deissenberg, C., Optimal control of linear econometric models with intermittent controls, Econ plan, 16, 49-56, (1980)
[6] Hu, M.; Xu, Z., Adaptive feedback controller for projective synchronization, Nonlinear anal, 9, 1253-1260, (2008) · Zbl 1144.93364
[7] Wang, Y.; Wang, Z.D.; Liang, J.L., On robust stability of stochastic genetic regulatory networks with time-delays: a delay fractioning approach, IEEE trans syst man cyb – part B, 40, 729-740, (2010)
[8] Wang, Z.D.; Wang, Y.; Liu, Y.R., Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays, IEEE trans neural netw, 21, 11-25, (2010)
[9] Tanaka, K.; Wang, H.O., Fuzzy control of chaotic systems using LMIs: regulation, synchronization and chaos model following, IEEE world congress on fuzzy systems proc, 1434-1439, (1998)
[10] Mao, X., Exponential stability of stochastic differential equations, (1994), Marcel Dekker New York
[11] Lu, J.; Ho, D.W.C.; Cao, J.D., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 1215-1221, (2010) · Zbl 1194.93090
[12] Wang, Y.; Wang, Z.D.; Liang, J.L., A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances, Phys lett A, 372, 6066-6073, (2008) · Zbl 1223.90013
[13] Earl, M.G.; Strogate, S.H., Synchronization in oscillator networks with delayed coupling: a stability criterion, Phys rev E, 67, 036204, (2003)
[14] Zhou, J.; Lu, J.A.; Lü, J.H., Adaptive synchronization of an uncertain complex dynamical network, IEEE trans autom contr, 51, 652-656, (2006) · Zbl 1366.93544
[15] Chen, T.; Liu, X.; Lu, W., Pinning complex networks by a single controller, IEEE trans circuits syst I, 54, 1317-1326, (2007) · Zbl 1374.93297
[16] Porfiri, M.; diBernardo, M., Criteria for global pinning-controllability of complex networks, Automatica, 44, 3100-3106, (2008) · Zbl 1153.93329
[17] Huang, T.W.; Li, C.D.; Liu, X.Z., Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18, 033122, (2008) · Zbl 1309.34096
[18] Shen, B.; Wang, Z.D.; Liu, X.H., Bounded H-infinity synchronization and state estimation for discrete time-varying stochastic complex networks over a finite-horizon, IEEE trans neural netw, 22, 145-157, (2011)
[19] Huang, T.; Li, C.; Yu, W.; Chen, G., Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback, Nonlinearity, 22, 569-584, (2009) · Zbl 1167.34386
[20] Yang, X.; Cao, J., Stochastic synchronization of coupled neural networks with intermittent control, Phys lett A, 373, 3259-3272, (2009) · Zbl 1233.34020
[21] Liu, Y.R.; Wang, Z.D.; Liang, J.L.; Liu, X.H., Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time-delays, IEEE trans neural netw, 20, 1102-1116, (2009)
[22] Liang, J.L.; Wang, Z.D.; Liu, X.H., State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case, IEEE trans neural netw, 20, 781-793, (2009)
[23] Shahverdiev, E.M.; Sivaprakasam, S.; Shore, K.A., Parameter mismatches and perfect anticipating synchronization in bi-directionally coupled external cavity laser diodes, Phys rev E, 66, 017206, (2002)
[24] Jalnine, A.; Kim, S.Y., Characterization of the parameter-mismatching effect on the loss of chaos synchronization, Phys rev E, 65, 026210, (2002)
[25] Hu, C.; Yu, J.; Jiang, H.J.; Teng, Z.D., Exponential lag synchronization for neural networks with mixed delays via periodically intermittent control, Chaos, 20, 023108, (2010) · Zbl 1311.92017
[26] Yang, T., Impulsive control theory, (2001), Springer-Verlag Berlin Heidelberg New York
[27] Xia, W.G.; Cao, J.D., Pinning synchronization of delayed dynamical networks via periodically intermittent control, Chaos, 19, 013120, (2009) · Zbl 1311.93061
[28] Zochowski, M., Intermittent dynamical control, Physica D, 145, 181-190, (2000) · Zbl 0963.34030
[29] Hu, C.; Yu, J.; Jiang, H.J.; Teng, Z.D., Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23, 2369-2391, (2010) · Zbl 1197.92005
[30] Cao, J.D.; Wang, Z.D.; Sun, Y.H., Synchronization in an array of linearly stochastically coupled ne1works with time delays, Physica A, 385, 718-728, (2007)
[31] Pototsky, A.; Janson, N., Synchronization of a large number of continuous one-dimensional stochastic elements with time-delayed Mean-field coupling, Physica D, 238, 175-183, (2009) · Zbl 1168.82020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.