×

zbMATH — the first resource for mathematics

Abelianization of subgroups of reflection groups and their braid groups: an application to cohomology. (English) Zbl 1241.20038
The final result of this article gives the order of the extension \[ 1\to P/[P,P]@>j>>B/[P,P]@>p>>W\to 1 \] as an element of the cohomology group \(H^2(W,P/[P,P])\) (where \(B\) and \(P\) stand for the braid group and the pure braid group associated to the complex reflection group \(W\)). To obtain this result, the author first refines Stanley-Springer’s theorem on the Abelianization of a reflection group to describe the Abelianization of the stabilizer \(N_H\) of a hyperplane \(H\). The second step is to describe the Abelianization of big subgroups of the braid group \(B\) of \(W\). More precisely, he just needs a group homomorphism from the inverse image of \(N_H\) by \(p\) (where \(p\colon B\to W\) is the canonical morphism) but a slight enhancement gives a complete description of the Abelianization of \(p^{-1}(W')\) where \(W'\) is a reflection subgroup of \(W\) or the stabilizer of a hyperplane. He also suggests a lifting construction for every element of the centralizer of a reflection in \(W\).

MSC:
20F36 Braid groups; Artin groups
20F55 Reflection and Coxeter groups (group-theoretic aspects)
20J06 Cohomology of groups
Software:
GAP; CHEVIE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bessis, D.: Finite complex reflection arrangements are k({\(\pi\)},1). arXiv:math/ 0610777v3 [math.GT], (2006)
[2] Bessis, D.: Garside categories, periodic loops and cyclic sets. arXiv:math/ 0610778v1 [math.GR], (2006)
[3] Broué, M.: Introduction to complex reflection groups and their braid groups. Springer, Berlin, LNM 1988, (2010) · Zbl 1196.20045
[4] Broué M., Malle G., Rouquier R.: Complex reflection groups, braid groups, hecke algebras. J. Reine und Angew. Math. 500, 127–190 (1998) · Zbl 0921.20046
[5] Brown, K.S.: Cohomology of groups, Springer, New York, GTM 87, (1982) · Zbl 0584.20036
[6] Digne F.: Présentation des groupes de tresses purs et de certaines de leurs extensions, Preprint
[7] Geck M., Hiss G., Lübeck F., Malle G., Pfeiffer G.: CHEVIE–A system for computing and processing generic character tables. Appl. Algebra Engrg. Comm. Comput. 7, 175–210 (1996) · Zbl 0847.20006
[8] Marin I.: Reflection groups acting on their hyperplanes. J. Algebra 322, 2848–2860 (2009) · Zbl 1188.20036
[9] Orlik P., Solomon L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, 167–189 (1980) · Zbl 0432.14016
[10] Schönert, M. (ed.): GAP–Groups, algorithms, and programming, version 3 release 4 patchlevel 4, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, (1995)
[11] Shephard G.C., Todd J.A.: Finite unitary reflection groups. Canad. J. Maths. VI, 274–304 (1954) · Zbl 0055.14305
[12] Springer, T.A.: Invariant theory, Springer, Berlin LNM 585, (1977) · Zbl 0346.20020
[13] Steinberg R.: Differential equations invariant under finite reflection groups. Trans. Amer. Math. Soc. 112(3), 392–400 (1964) · Zbl 0196.39202
[14] Stanley R.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra 49, 134–148 (1977) · Zbl 0383.20029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.