×

zbMATH — the first resource for mathematics

Periodic solution for strongly nonlinear vibration systems by He’s energy balance method. (English) Zbl 1241.34049
The paper presents He’s energy balance method to study periodic solution of the strongly nonlinear system \[ u''+f(u(t))=0~. \] Some examples are given which reveal that even the lowest order approximation are of high accuracy.

MSC:
34C25 Periodic solutions to ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, Berlin (2006)
[2] Dimarogonas, A.D., Haddad, S.: Vibration for Engineers. Prentice–Hall, Englewood Cliffs (1992) · Zbl 0785.73001
[3] He, J.H.: Non-perturbative methods for strongly nonlinear problems. Dissertation, de-Verlag im Internet GmbH, Berlin (2006)
[4] He, J.H.: Homotopy perturbation technique, computer methods. Appl. Mech. Eng. 178, 257–262 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[5] He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151, 287–292 (2004) · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[6] Hashemi, S.H., Daniali, K.H.R.M., Ganji, D.D.: Numerical simulation of the generalized Huxley equation by He’s homotopy perturbation method. Appl. Math. Comput. 192, 157–161 (2007) · Zbl 1193.65181 · doi:10.1016/j.amc.2007.02.128
[7] Ganji, D.D., Sadighi, A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Non-Linear Sci. Numer. Simul. 7(4), 411–418 (2006) · Zbl 06942220
[8] Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981) · Zbl 0449.34001
[9] He, J.H.: Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. Int. J. Non-Linear Mech. 37, 309–314 (2002) · Zbl 1116.34320 · doi:10.1016/S0020-7462(00)00116-5
[10] He, J.H.: Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion. Int. J. Non-Linear Sci. Numer. Simul. 2, 317–320 (2001) · Zbl 1072.34507
[11] Wang, S.Q., He, J.H.: Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos Solitons Fractals 35, 688–691 (2008) · Zbl 1210.70023 · doi:10.1016/j.chaos.2007.07.055
[12] He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[13] He, J.H.: Some new approaches to duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique. Commun. Non-Linear Sci. Numer. Simul. 4, 81–82 (1999) · Zbl 0932.34058 · doi:10.1016/S1007-5704(99)90065-5
[14] He, J.H.: A review on some new recently developed nonlinear analytical techniques. Int. J. Non-Linear Sci. Numer. Simul. 1, 51–70 (2000) · Zbl 0966.65056
[15] He, J.H.: Determination of limit cycles for strongly nonlinear oscillators. Phys. Rev. Lett. 90, 174–181 (2006)
[16] D’Acunto, M.: Determination of limit cycles for a modified van der Pol oscillator. Mech. Res. Commun. 33, 93–100 (2006) · Zbl 1192.70026 · doi:10.1016/j.mechrescom.2005.06.012
[17] He, J.H.: Preliminary report on the energy balance for nonlinear oscillations. Mech. Res. Commun. 29, 107–118 (2002) · Zbl 1048.70011 · doi:10.1016/S0093-6413(02)00237-9
[18] He, J.H.: Variational iteration method–a kind of nonlinear analytical technique: some examples. Int. J. Non-Linear Mech. 34, 699–708 (1999) · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[19] Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305, 614–620 (2007) · Zbl 1242.65154 · doi:10.1016/j.jsv.2007.04.020
[20] He, J.H., Wu, X.H.: Construction of solitary solution and compaction-like solution by variational iteration method. Chaos Solitons Fractals 29, 108–113 (2006) · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[21] Varedi, S.M., Hosseini, M.J., Rahimi, M., Ganji, D.D.: He’s variational iteration method for solving a semi-linear inverse parabolic equation. Phys. Lett. A 370, 275–280 (2007) · Zbl 1209.65118 · doi:10.1016/j.physleta.2007.05.100
[22] Hashemi, S.H., Tolou, K.N., Barari, A., Choobbasti, A.J.: On the approximate explicit solution of linear and non-linear non-homogeneous dissipative wave equations. In: Istanbul Conferences. Torque, accepted (2008) · Zbl 1168.65057
[23] He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34, 1430–1439 (2007) · Zbl 1152.34327 · doi:10.1016/j.chaos.2006.10.026
[24] Naghipour, M., Ganji, D.D., Hashemi, S.H., Jafari, K.: Analysis of non-linear oscillations systems using analytical approach. J. Phys. 96 (2008)
[25] Wu, Y.: Variational approach to higher-order water–wave equations. Chaos Solitons Fractals 32, 195–203 (2007) · Zbl 1131.76015 · doi:10.1016/j.chaos.2006.05.019
[26] Xu, L.: Variational approach to Solitons of nonlinear dispersive K(m,n) equations. Chaos Solitons Fractals 37, 137–143 (2008) · Zbl 1143.35361 · doi:10.1016/j.chaos.2006.08.016
[27] Inokuti, M., et al.: General use of the Lagrange multiplier in non-linear mathematical physics. In: Nemat-Nasser, S. (ed.) Variational Method in the Mechanics of Solids, pp. 156–162. Pergamon Press, Oxford (1978)
[28] Liu, H.M.: Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method. Chaos Solitons Fractals 23(2), 573–576 (2005) · Zbl 1135.76597 · doi:10.1016/j.chaos.2004.05.005
[29] He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficient. Chaos Solitons Fractals 19(4), 847–851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[30] Marinca, V., Herisanu, N.: A modified iteration perturbation method for some nonlinear oscillation problems. Acta Mech. 184, 231–242 (2006) · Zbl 1106.70014 · doi:10.1007/s00707-006-0336-5
[31] Suna, W.P., Wua, B.S., Lim, C.W.: J. Sound Vib. 300(5–6), 1042 (2007) · Zbl 1241.93029 · doi:10.1016/j.jsv.2006.08.025
[32] Ganji, S. S., Ganji, D. D., Ganji, H., Babazadeh, Karimpour, S.: Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic duffing oscillators. Prog. Electromagn. Res. M 4, 23–32 (2008) · Zbl 1152.74392 · doi:10.2528/PIERM08061007
[33] Tiwari, S.B., Rao, B.N., Swamy, N.S., Sai, K.S., Nataraja, H.R.: Analytical study on a Duffing-harmonic oscillator. J. Sound Vib. 285, 1217–1222 (2005) · Zbl 1238.34070 · doi:10.1016/j.jsv.2004.11.001
[34] Mickens, R.E.: Periodic solutions of the relativistic harmonic oscillator. J. Sound Vib. 212, 905–908 (1998) · Zbl 1235.70044 · doi:10.1006/jsvi.1997.1453
[35] Chen, Y.Z., Lin, X.Y.: A convenient technique for evaluating angular frequency in some nonlinear oscillations. J. Sound Vib. 305, 552–562 (2007) · Zbl 1242.70047 · doi:10.1016/j.jsv.2007.04.018
[36] Civalek, Ö.: Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ). Int. J. Struct. Eng. Mech. 25(2), 201–217 (2007)
[37] Fung, T.C.: Solving initial value problems by differential quadrature method. Part 1: First-order equations. Int. J. Numer. Methods Eng. 50, 1411–1427 (2001) · Zbl 1050.74056 · doi:10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
[38] Fung, T.C.: Stability and accuracy of differential quadrature method in solving dynamic problems. Comput. Methods Appl. Mech. Eng. 191(13–14), 1311–1331 (2002) · Zbl 0993.65086 · doi:10.1016/S0045-7825(01)00324-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.