×

zbMATH — the first resource for mathematics

An algorithm for solving linear Volterra integro-differential equations. (English) Zbl 1241.65121
Summary: An efficient numerical procedure for solving linear second order Volterra integro-differential equations is presented. The scheme is based on B-spline collocation and cubature formulas. Analysis is accompanied by numerical examples. Results confirm reliability and efficiency of the proposed algorithm.

MSC:
65R20 Numerical methods for integral equations
45D05 Volterra integral equations
45J05 Integro-ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal, R.P.: Boundary Value Problems for High Ordinary Differential Equations. World Scientific, Singapore (1986) · Zbl 0619.34019
[2] Agarwal, R.P.: Boundary value problems for higher order integro-differential equations. Nonlinear Anal. 7(3), 259–270 (1983) · Zbl 0505.45002 · doi:10.1016/0362-546X(83)90070-6
[3] Aguilar, M., Brunner, H.: Collocation methods for second-order Volterra integro-differential equations. Appl. Numer. Math. 4, 455–470 (1988) · Zbl 0651.65098 · doi:10.1016/0168-9274(88)90009-8
[4] Akyüz-Daşcioǧlu, A.: A Chebyshev polynomial approach for linear Fredholm-Volterra integro-differential equations in the most general form. Appl. Numer. Math. 181, 103–112 (2006) · Zbl 1148.65318
[5] Brunner, H.: Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput. 53(188), 571–587 (1989) · Zbl 0681.65105 · doi:10.1090/S0025-5718-1989-0979936-2
[6] Brunner, H., Makroglou, A., Miller, R.K.: Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution. Appl. Math. Comput. 23, 381–402 (1997) · Zbl 0876.65090
[7] Brunner, H., Pedas, A., Vainikko, G.: A Spline collocation method for linear Volterra integro-differential Equations with weakly singular kernels. BIT 41(5), 891–900 (2001) · Zbl 0998.65134 · doi:10.1023/A:1021920724315
[8] Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press (2004) · Zbl 1059.65122
[9] Chui, C.K., Wang, R.H.: On a bivariate B-spline basis. Sci. Sinica Ser. A 27(11), 1129–1142 (1984) · Zbl 0559.41010
[10] Crisci, M.R., Russo, E., Vecchio, A.: Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations. Math. Comput. 58(197), 119–134 (1992) · Zbl 0744.65101 · doi:10.1090/S0025-5718-1992-1106963-7
[11] Dagnino, C., Lamberti, P.: Numerical integration of 2-D integrals based on local bivariate C 1 quasi-interpolating splines. Adv. Comput. Math. 8, 19–31 (1998) · Zbl 0893.65009 · doi:10.1023/A:1018927809928
[12] de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10(4), 582–606 (1973) · Zbl 0232.65065 · doi:10.1137/0710052
[13] de Boor, C.: A Practical Guide to Splines, revised edn. Applied Mathematical Sciences, vol. 27. Springer-Verlag, New York (2001) · Zbl 0987.65015
[14] de Boor, C.: The exact condition of the B-spline basis may be hard to determine. J. Approx. Theory 60, 344–359 (1990) · Zbl 0687.41011 · doi:10.1016/0021-9045(90)90064-W
[15] El-Sayed, S.M., Abdel-Aziz, M.R.: A comparison of Adomian’s decomposition method and wavelet-Galerkin method for solving integro-differential equations. Appl. Math. Comput. 136, 151–159 (2003) · Zbl 1023.65149 · doi:10.1016/S0096-3003(02)00024-3
[16] Ghoreishi, F., Hadizadeh, M.: Numerical computation of the tau approximation for the Volterra-Hammerstein integral equations. Numer. Algorithms 52(4), 541–559 (2009) · Zbl 1185.65234 · doi:10.1007/s11075-009-9297-9
[17] Garey, L.E., Shaw, R.E.: Efficient algorithms for solving nonlinear Volterra integro-differential equations with two point boundary conditions. Internat. J. Math. Math. Sci. 21(4), 755–760 (1998) · Zbl 0957.65121 · doi:10.1155/S0161171298001057
[18] Hangelbroek, R.J., Kaper, H.G., Leaf, G.K.: Collocation methods for integro-differential equations. SIAM J. Numer. Anal. 14(3), 377–390 (1977) · Zbl 0354.65063 · doi:10.1137/0714023
[19] Hosseini, S.M., Shahmorad, S.: Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 136(2–3), 559–570 (2003) · Zbl 1027.65182 · doi:10.1016/S0096-3003(02)00081-4
[20] Karamete, A., Sezer, M.: A Taylor collocation method for the solution of linear integro-differential equations. Int. J. Comput. Math. 79(9), 987–1000 (2002) · Zbl 1006.65144 · doi:10.1080/00207160212116
[21] Maleknejad, K., Mahmoudi, Y.: Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations. Appl. Math. Comput. 145, 641–653 (2003) · Zbl 1032.65144 · doi:10.1016/S0096-3003(03)00152-8
[22] Maleknejad, K., Mirzaee, F.: Using rationalized Haar wavelet for solving linear integral equations. Appl. Math. Comput. 160, 579–587 (2005) · Zbl 1067.65150 · doi:10.1016/j.amc.2003.11.036
[23] Maleknejad, K., Derili, H.: Numerical solution of integral equations by using combination of Spline-collocation method and Lagrange interpolation. Appl. Math. Comput. 175, 1235–1244 (2006) · Zbl 1093.65125 · doi:10.1016/j.amc.2005.08.034
[24] Muhammad, M., Nurmuhammad, A., Mori, M., Sugihara, M.: Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation. J. Comput. Appl. Math. 177, 269–286 (2005) · Zbl 1072.65168 · doi:10.1016/j.cam.2004.09.019
[25] Morchalo, J.: On two point boundary value problem for integro-differential equation of second order. Fasc. Math. 9, 51–56 (1975) · Zbl 0363.45005
[26] Oja, P., Saveljeva, D.: Cubic spline collocation for Volterra integral equations. Computing 69, 319–337 (2002) · Zbl 1239.45004 · doi:10.1007/s00607-002-1463-z
[27] Pittaluga, G., Sacripante, L.: A numerical algorithm for cubature by bivariate splines on nonuniform partitions. Numer. Algorithms 28, 273–284 (2001) · Zbl 0991.65027 · doi:10.1023/A:1014067406710
[28] Pittaluga, G., Sacripante, L.: An algorithm for solving Fredholm integro-differential equations. Numer. Algorithms 50, 115–126 (2009) · Zbl 1162.65064 · doi:10.1007/s11075-008-9219-2
[29] Rashed, M.T.: Numerical solution of a special type of integro-differential equations method. Appl. Math. Comput. 143, 73–88 (2003) · Zbl 1025.65063 · doi:10.1016/S0096-3003(02)00347-8
[30] Rashed, M.T.: Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations. Appl. Math. Comput. 151, 869–878 (2004) · Zbl 1048.65133 · doi:10.1016/S0096-3003(03)00543-5
[31] Rashidinia, J., Zarebnia, M.: Numerical solution of linear integral equations by using Sinc-collocation method. Appl. Math. Comput. 168, 806–822 (2005) · Zbl 1082.65601 · doi:10.1016/j.amc.2004.09.044
[32] Russell, R.D., Sun, W.: Spline collocation differentiation matrices. SIAM J. Numer. Anal. 34(6), 2274–2287 (1997) · Zbl 0888.65120 · doi:10.1137/S0036142994277985
[33] Sezer, M., Gülsu, M.: Polynomial solution of the most general linear Fredholm-Volterra integro-differential equations by means of Taylor collocation method. Appl. Math. Comput. 185, 646–657 (2007) · Zbl 1107.65353 · doi:10.1016/j.amc.2006.07.051
[34] Shaw, R.E., Garey, L.E.: A fast method for solving second order boundary value Volterra integro-differential equations. Int. J. Comput. Math. 65, 121–129 (1997) · Zbl 0897.65089 · doi:10.1080/00207169708804602
[35] Shaw, R.E., Garey, L.E.: A shooting method for singular nonlinear second order Volterra integro-differential equations. Internat. J. Math. Math. Sci. 20(3), 589–598 (1997) · Zbl 0886.65143 · doi:10.1155/S016117129700080X
[36] Sloss, B.G., Blyth, W.F.: A Walsh function method for a non-linear Volterra integral equation. J. Franklin Inst. 340, 25–41 (2003) · Zbl 1023.65141 · doi:10.1016/S0016-0032(02)00052-2
[37] Smirnov, V.: Cours de Mathématiques Supérieurs, Tome IV, 2ième partie, Éditions Mir, Moscou (1984)
[38] Scherer, K., Shadrin, A. Yu.: New upper bound for the B-spline basis condition number II: a proof of de Boor’s 2 k conjecture. J. Approx. Theory 99, 217–229 (1999) · Zbl 0955.41013 · doi:10.1006/jath.1998.3310
[39] Tari, A., Rahimi, M.Y., Shahmorad, S., Talati, F.: Development of the tau method for the numerical solution of two-dimensional linear Volterra integro-differential equation. Comput. Methods Appl. Math. 9(4), 421–435 (2009) · Zbl 1188.65178
[40] Taylor, A.E.: Introduction to Functional Analysis. John Wiley & Sons, Inc., New York (1958) · Zbl 0081.10202
[41] Yalçinbaş, S., Sezer, M.: The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Comput. 112, 291–308 (2000) · Zbl 1023.65147 · doi:10.1016/S0096-3003(99)00059-4
[42] Zarebnia, M.: Sinc numerical solution for Volterra integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 15(3), 700–706 (2010) · Zbl 1221.65346 · doi:10.1016/j.cnsns.2009.04.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.