×

zbMATH — the first resource for mathematics

Dense suspensions in rotating-rod flows: normal stresses and particle migration. (English) Zbl 1241.76008
Summary: Normal stress differences are measured in dense suspensions of neutrally buoyant non-Brownian spheres dispersed in a Newtonian fluid. Rotating-rod rheometry is used to characterize the suspension normal stresses which are responsible for a rod-dipping phenomenon. These normal stress differences are seen to strongly increase above a volume fraction of approximately 22 %. During the course of the experiments, a new time-dependent behaviour is also observed: the dip is filled with increasing times. This time evolution is found to be related to particle migration from regions of high shear rate to regions of low shear rate. The behaviour is compared with the predictions of a suspension balance model in which the particle migration flux is related to the normal stresses of the suspension.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76T20 Suspensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Taylor, University Science Books (1982)
[2] DOI: 10.1122/1.550954
[3] DOI: 10.1146/annurev.fluid.36.050802.122132 · Zbl 1117.76066
[4] DOI: 10.1017/S0022112003005366 · Zbl 1063.76512
[5] DOI: 10.1017/S0022112000008375 · Zbl 0977.76089
[6] DOI: 10.1122/1.1501925
[7] Richardson, Trans. Inst. Chem. Engrs 32 pp 35– (1954)
[8] DOI: 10.1122/1.2188528
[9] DOI: 10.1063/1.3570921 · Zbl 06422343
[10] DOI: 10.1122/1.548947
[11] DOI: 10.1017/S0022112094002326 · Zbl 0925.76835
[12] DOI: 10.1002/andp.19053220806 · JFM 36.0975.01
[13] DOI: 10.1017/S0022112073001527 · Zbl 0267.76020
[14] DOI: 10.1122/1.549584
[15] DOI: 10.1007/s00397-009-0352-1
[16] DOI: 10.1051/jphys:01979004008078300
[17] DOI: 10.1122/1.551021
[18] DOI: 10.1063/1.3079672 · Zbl 1183.76304
[19] DOI: 10.1017/S0022112087002155
[20] DOI: 10.1017/S002211207500153X · Zbl 0315.76004
[21] DOI: 10.1016/0001-8686(72)80001-0
[22] DOI: 10.1017/S0022112072002435 · Zbl 0246.76108
[23] DOI: 10.1016/0377-0257(94)01282-M
[24] DOI: 10.1122/1.550157
[25] DOI: 10.1122/1.551083
[26] DOI: 10.1017/S0022112005004623 · Zbl 1074.76051
[27] DOI: 10.1098/rsta.1923.0008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.