Walker, Christoph On positive solutions of some system of reaction-diffusion equations with nonlocal initial conditions. (English) Zbl 1242.35141 J. Reine Angew. Math. 660, 149-179 (2011). The author focuses on the positive solutions \(u=u\left( a,x\right) \) and \(v=v\left( a,x\right) \) of the system of parabolic equations \[ \partial _au-\Delta _Du=-\left( \alpha _1u+\alpha _2v\right) u,a\in \left( 0,a_m\right) ,x\in \Omega , \]\[ \partial _av-\Delta _Dv=-\left( \beta _1v-\beta _2u\right) v,a\in \left( 0,a_m\right) ,x\in \Omega , \] with the nonlocal initial conditions \[ u\left( x,0\right) =\eta \int\limits_0^{a_m}b_1\left( a\right) u\left( a,x\right) da,x\in \Omega , \]\[ v\left( x,0\right) =\xi \int\limits_0^{a_m}b_2\left( a\right) v\left( a,x\right) da,x\in \Omega . \] The subscript \(D\) indicates that Dirichlet conditions are imposed on the boundary \(\partial \Omega \). Such system arises when studying stationary solutions to a particular predator-prey system with age structure. Using global bifurcation techniques, the author describes the structure of the set of positive solutions with respect to two parameters measuring the intensities of the fertility of the species. Of particular interest are coexistence solutions, solutions \(\left( u,v\right) \) with both components nonnegative and nonzero. Reviewer: Cristian Chifu (Cluj-Napoca) Cited in 7 Documents MSC: 35K51 Initial-boundary value problems for second-order parabolic systems 35K57 Reaction-diffusion equations 35B09 Positive solutions to PDEs 92D25 Population dynamics (general) Keywords:predator-prey model; coexistence solutions; Dirichlet conditions; age structure; global bifurcation techniques PDF BibTeX XML Cite \textit{C. Walker}, J. Reine Angew. Math. 660, 149--179 (2011; Zbl 1242.35141) Full Text: DOI arXiv OpenURL References: [1] Amann H., Glas. Mat. Ser. III 35 (55) pp 161– (2000) [2] Blat J., Proc. Roy. Soc. Edinburgh 97 pp 21– (1984) [3] DOI: 10.1137/0517094 · Zbl 0613.35008 [4] Cantrell R. S., Houston J. Math. 13 pp 337– (1987) [5] Casal A., Di{\currency}. Int. Equ. 7 pp 411– (1994) [6] DOI: 10.1137/0144080 · Zbl 0562.92012 [7] DOI: 10.1016/0022-1236(71)90015-2 · Zbl 0219.46015 [8] DOI: 10.1007/BF00275988 · Zbl 0553.92014 [9] DOI: 10.1016/0898-1221(85)90145-2 · Zbl 0578.92020 [10] DOI: 10.1090/S0002-9947-1984-0743741-4 [11] DOI: 10.1016/0022-0396(85)90115-9 · Zbl 0549.35024 [12] Dancer E. N., Di{\currency}. Int. Equ. 8 pp 515– (1995) [13] DOI: 10.1016/j.jmaa.2007.05.011 · Zbl 1137.47002 [14] DOI: 10.1002/mma.1670040118 · Zbl 0493.35044 [15] DOI: 10.1016/j.jde.2008.07.015 · Zbl 1154.35057 [16] DOI: 10.1016/j.jde.2005.05.009 · Zbl 1093.35033 [17] DOI: 10.1016/0022-1236(71)90030-9 · Zbl 0212.16504 [18] DOI: 10.1007/BF00275791 · Zbl 0498.92015 [19] DOI: 10.1016/j.jde.2009.11.028 · Zbl 1197.35041 [20] DOI: 10.1007/s10231-010-0133-6 · Zbl 1242.35036 [21] DOI: 10.1007/s00013-010-0133-1 · Zbl 1203.35129 [22] DOI: 10.1016/0362-546X(82)90028-1 · Zbl 0522.92017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.