×

zbMATH — the first resource for mathematics

The well-posedness of solutions for a generalized shallow water wave equation. (English) Zbl 1242.35191
Summary: A nonlinear partial differential equation containing the famous Camassa-Holm and Degasperis-Procesi equations as special cases is investigated. The Kato theorem for abstract differential equations is applied to establish the local well-posedness of solutions for the equation in the Sobolev space \(H^s(\mathbb{R})\) with \(s > 3/2\). Although the \(H^1\)-norm of the solutions to the nonlinear model does not remain constant, the existence of its weak solutions in the lower-order Sobolev space \(H^s\) with \(1 \leq s \leq 3/2\) is proved under the assumptions \(u_0 \in H^s\) and \(||u_{0x}||_{L^\infty} < \infty\).

MSC:
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Constantin and D. Lannes, “The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,” Archive for Rational Mechanics and Analysis, vol. 192, no. 1, pp. 165-186, 2009. · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[2] R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Physical Review Letters, vol. 71, no. 11, pp. 1661-1664, 1993. · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[3] A. Degasperis and M. Procesi, “Asymptotic integrability,” in Symmetry and Perturbation Theory, vol. 7, pp. 23-37, World Scientific, Singapore, 1999. · Zbl 0963.35167
[4] R. S. Johnson, “Camassa-Holm, Korteweg-de Vries and related models for water waves,” Journal of Fluid Mechanics, vol. 455, pp. 63-82, 2002. · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[5] A. Constantin, “The trajectories of particles in Stokes waves,” Inventiones Mathematicae, vol. 166, no. 3, pp. 523-535, 2006. · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[6] A. Constantin and J. Escher, “Particle trajectories in solitary water waves,” Bulletin of American Mathematical Society, vol. 44, no. 3, pp. 423-431, 2007. · Zbl 1126.76012 · doi:10.1090/S0273-0979-07-01159-7
[7] A. Bressan and A. Constantin, “Global conservative solutions of the Camassa-Holm equation,” Archive for Rational Mechanics and Analysis, vol. 183, no. 2, pp. 215-239, 2007. · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[8] G. M. Coclite, H. Holden, and K. H. Karlsen, “Global weak solutions to a generalized hyperelastic-rod wave equation,” SIAM Journal on Mathematical Analysis, vol. 37, no. 4, pp. 1044-1069, 2005. · Zbl 1100.35106 · doi:10.1137/040616711
[9] A. Constantin and J. Escher, “Wave breaking for nonlinear nonlocal shallow water equations,” Acta Mathematica, vol. 181, no. 2, pp. 229-243, 1998. · Zbl 0923.76025 · doi:10.1007/BF02392586
[10] A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, “Inverse scattering transform for the Camassa-Holm equation,” Inverse Problems, vol. 22, no. 6, pp. 2197-2207, 2006. · Zbl 1105.37044 · doi:10.1088/0266-5611/22/6/017
[11] A. Constantin and W. A. Strauss, “Stability of peakons,” Communications on Pure and Applied Mathematics, vol. 53, no. 5, pp. 603-610, 2000. · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[12] A. Constantin and J. Escher, “Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,” Communications on Pure and Applied Mathematics, vol. 51, no. 5, pp. 475-504, 1998. · Zbl 0934.35153 · doi:10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
[13] A. Constantin and R. S. Johnson, “Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,” Fluid Dynamics Research, vol. 40, no. 3, pp. 175-211, 2008. · Zbl 1135.76007 · doi:10.1016/j.fluiddyn.2007.06.004
[14] A. A. Himonas, G. Misiołek, G. Ponce, and Y. Zhou, “Persistence properties and unique continuation of solutions of the Camassa-Holm equation,” Communications in Mathematical Physics, vol. 271, no. 2, pp. 511-522, 2007. · Zbl 1142.35078 · doi:10.1007/s00220-006-0172-4
[15] H. Holden and X. Raynaud, “Dissipative solutions for the Camassa-Holm equation,” Discrete and Continuous Dynamical Systems. Series A, vol. 24, no. 4, pp. 1047-1112, 2009. · Zbl 1178.65099 · doi:10.3934/dcds.2009.24.1047
[16] Y. A. Li and P. J. Olver, “Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,” Journal of Differential Equations, vol. 162, no. 1, pp. 27-63, 2000. · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[17] Z. Xin and P. Zhang, “On the weak solutions to a shallow water equation,” Communications on Pure and Applied Mathematics, vol. 53, no. 11, pp. 1411-1433, 2000. · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[18] Y. Liu and Z. Yin, “Global existence and blow-up phenomena for the Degasperis-Procesi equation,” Communications in Mathematical Physics, vol. 267, no. 3, pp. 801-820, 2006. · Zbl 1131.35074 · doi:10.1007/s00220-006-0082-5
[19] Y. Zhou, “Blow-up of solutions to the DGH equation,” Journal of Functional Analysis, vol. 250, no. 1, pp. 227-248, 2007. · Zbl 1124.35079 · doi:10.1016/j.jfa.2007.04.019
[20] Z. Guo and Y. Zhou, “Wave breaking and persistence properties for the dispersive rod equation,” SIAM Journal on Mathematical Analysis, vol. 40, no. 6, pp. 2567-2580, 2009. · Zbl 1177.30024 · doi:10.1137/080734704
[21] S. Lai and Y. Wu, “Global solutions and blow-up phenomena to a shallow water equation,” Journal of Differential Equations, vol. 249, no. 3, pp. 693-706, 2010. · Zbl 1198.35041 · doi:10.1016/j.jde.2010.03.008
[22] S. Lai and Y. Wu, “A model containing both the Camassa-Holm and Degasperis-Procesi equations,” Journal of Mathematical Analysis and Applications, vol. 374, no. 2, pp. 458-469, 2011. · Zbl 1202.35231 · doi:10.1016/j.jmaa.2010.09.012
[23] T. Kato, “Quasi-linear equations of evolution, with applications to partial differential equations,” in Spectral Theory and Differential Equations, Lecture Notes in Mathematics, pp. 25-70, Springer, Berlin, Germany, 1975. · Zbl 0315.35077
[24] G. Rodríguez-Blanco, “On the Cauchy problem for the Camassa-Holm equation,” Nonlinear Analysis, vol. 46, no. 3, pp. 309-327, 2001. · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[25] Z. Y. Yin, “On the Cauchy problem for an integrable equation with peakon solutions,” Illinois Journal of Mathematics, vol. 47, no. 3, pp. 649-666, 2003. · Zbl 1061.35142 · www.math.uiuc.edu
[26] T. Kato and G. Ponce, “Commutator estimates and the Euler and Navier-Stokes equations,” Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 891-907, 1988. · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[27] W. Walter, Differential and Integral Inequalities, Springer, New York, NY, USA, 1970. · Zbl 0252.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.