×

zbMATH — the first resource for mathematics

Fractional sub-equation method and its applications to nonlinear fractional PDEs. (English) Zbl 1242.35217
Summary: A fractional sub-equation method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, the nonlinear time fractional biological population model and (4+1)-dimensional space-time fractional Fokas equation are considered. As a result, three types of exact analytical solutions are obtained.

MSC:
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Clarkson, P.A., Soliton, nonlinear evolution equations and inverse scattering, (1991), Cambridge Univ. Press New York · Zbl 0762.35001
[2] Hirota, R., Phys. rev. lett., 27, 1192, (1971)
[3] Miurs, M.R., Bäcklund transformation, (1978), Springer Berlin
[4] Weiss, J.; Tabor, M.; Carnevale, G., J. math. phys., 24, 522, (1983)
[5] Wang, M.L., Phys. lett. A, 213, 279, (1996)
[6] Fan, E.G., Phys. lett. A, 300, 243, (2002)
[7] Fan, E.G., J. phys. A: math. gen., 36, 7009, (2003) · Zbl 1167.35324
[8] Fan, E.G., Chaos solitons fractals, 16, 819, (2003)
[9] Fan, E.G.; Dai, H.H., Comput. phys. commun., 153, 17, (2003)
[10] Fan, E.G.; Hon, Y., Chaos solitons fractals, 15, 559, (2003)
[11] Sirendaoreji; Sun, J., Phys. lett. A, 309, 387, (2003)
[12] Yomba, E., Chaos solitons fractals, 27, 187, (2007)
[13] Zhang, S.; Xia, T.C., Phys. lett. A, 363, 356, (2007)
[14] Zhang, S.; Xia, T.C., J. phys. A: math. theor., 40, 227, (2007)
[15] Zhang, S., Appl. math. comput., 188, 1, (2007)
[16] Song, L.N.; Zhang, H.Q., Appl. math. comput., 189, 560, (2007)
[17] Wang, M.L.; Li, X.Z.; Zhang, J.L., Phys. lett. A, 363, 96, (2007)
[18] Wang, M.L.; Li, X.Z.; Zhang, J.L., Phys. lett. A, 372, 417, (2008)
[19] El-Sayed, A.M.A.; Rida, S.Z.; Arafa, A.A.M., Commun. theor. phys. (Beijing, China), 52, 992, (2009)
[20] Kolwankar, K.M.; Gangal, A.D., Chaos, 6, 505, (1996)
[21] Kolwankar, K.M.; Gangal, A.D., Pramana J. phys., 48, 49, (1997)
[22] Kolwankar, K.M.; Gangal, A.D., Phys. rev. lett., 80, 214, (1998)
[23] Chen, Y.; Yan, Y.; Zhang, K.W., J. math. anal. appl., 362, 17, (2010)
[24] G.C. Wu, Comput. Math. Appl. (2010), doi:10.1016/j.camwa.2010.09.010.
[25] Sun, H.G.; Chen, W., Sci. China ser. E, 52, 680, (2009)
[26] Chen, W.; Sun, H.G., Mod. phys. lett. B, 23, 449, (2009)
[27] Cresson, J., J. math. phys., 44, 4907, (2003)
[28] Ben Adda, F.; Cresson, J., J. math. anal. appl., 263, 721, (2001)
[29] Jumarie, G., Comput. math. appl., 51, 1367, (2006)
[30] Jumarie, G., Math. comput. model., 44, 231, (2006)
[31] Jumarie, G., Appl. math. lett., 22, 1659, (2009)
[32] Wu, G.C.; Lee, E.W.M., Phys. lett. A, 374, 2506, (2010)
[33] Zhang, S.; Zong, Q.A.; Liu, D.; Gao, Q., Commun. fract. calc., 1, 48, (2010)
[34] He, J.H.; Wu, X.H., Chaos solitons fractals, 30, 700, (2006)
[35] Zhang, S., Nonlinear sci. lett. A, 2, 143, (2010)
[36] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, (1999), Academic Press New York · Zbl 0924.34008
[37] Lü, Z.S.; Zhang, H.Q., Commun. theor. phys. (Beijing, China), 39, 405, (2003)
[38] Yang, Z.Z.; Yan, Z.Y., Commun. theor. phys. (Beijing, China), 51, 876, (2009)
[39] Zhang, S.; Xia, T.C., Appl. math. comput., 183, 1190, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.