×

zbMATH — the first resource for mathematics

Common fixed point theorems for commutating mappings in fuzzy metric spaces. (English) Zbl 1242.54032
Summary: We generalize Jungck’s theorem [G. Jungck, Am. Math. Mon. 83, 261–263 (1976; Zbl 0321.54025)] to fuzzy metric spaces and prove common fixed point theorems for commutative mappings in fuzzy metric spaces.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2] Z. K. Deng, “Fuzzy Pesudo-metric space,” Journal of Mathematical Analysis and Applications, vol. 86, pp. 74-95, 1982. · Zbl 0501.54003 · doi:10.1016/0022-247X(82)90255-4
[3] M. A. Erceg, “Metric spaces in fuzzy set theory,” Journal of Mathematical Analysis and Applications, vol. 69, no. 1, pp. 205-230, 1979. · Zbl 0409.54007 · doi:10.1016/0022-247X(79)90189-6
[4] O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 12, no. 3, pp. 215-229, 1984. · Zbl 0558.54003 · doi:10.1016/0165-0114(84)90069-1
[5] I. Kramosil and J. Michálek, “Fuzzy metrics and statistical metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336-344, 1975. · Zbl 0319.54002 · eudml:28711
[6] M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385-389, 1988. · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[7] J. X. Fang, “On fixed point theorems in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 46, no. 1, pp. 107-113, 1992. · Zbl 0766.54045 · doi:10.1016/0165-0114(92)90271-5
[8] S. Banach, Theorie les operations Lineaires, Manograie Mathematyezne, Warsaw, Poland, 1932. · Zbl 0005.20901 · eudml:219336
[9] M. Edelstein, “On fixed and periodic points under contractive mappings,” Journal of the London Mathematical Society. Second Series, vol. 37, pp. 74-79, 1962. · Zbl 0113.16503 · doi:10.1112/jlms/s1-37.1.74
[10] I. Istr\ua\ctescu, “A fixed point theorem for mappings with a probabilistic contractive iterate,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 26, no. 3, pp. 431-435, 1981. · Zbl 0476.60006
[11] V. M. Sehgal and A. T. Bharucha-Reid, “Fixed points of contraction mappings on probabilistic metric spaces,” Mathematical Systems Theory, vol. 6, pp. 97-102, 1972. · Zbl 0244.60004 · doi:10.1007/BF01706080
[12] R. Badard, “Fixed point theorems for fuzzy numbers,” Fuzzy Sets and Systems, vol. 13, no. 3, pp. 291-302, 1984. · Zbl 0551.54005 · doi:10.1016/0165-0114(84)90063-0
[13] O. Had, “Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 29, no. 1, pp. 115-125, 1989. · Zbl 0681.54023 · doi:10.1016/0165-0114(89)90140-1
[14] R. K. Bose and D. Sahani, “Fuzzy mappings and fixed point theorems,” Fuzzy Sets and Systems, vol. 21, no. 1, pp. 53-58, 1987. · Zbl 0609.54032 · doi:10.1016/0165-0114(87)90152-7
[15] D. Butnarin, “Fixed point for fuzzy mappings,” Fuzzy Sets and Systems, vol. 7, pp. 191-207, 1982.
[16] S. S. Chang, “Fixed point theorems for fuzzy mappings,” Fuzzy Sets and Systems, vol. 17, no. 2, pp. 181-187, 1985. · Zbl 0579.54034 · doi:10.1016/0165-0114(85)90055-7
[17] B. S. Lee, Y. J. Cho, and J. S. Jung, “Fixed point theorems for fuzzy mappings and applications,” Korean Mathematical Society. Communications, vol. 11, no. 1, pp. 89-108, 1996. · Zbl 0939.54023
[18] G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no. 4, pp. 261-263, 1976. · Zbl 0321.54025 · doi:10.2307/2318216
[19] B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific Journal of Mathematics, vol. 10, pp. 313-334, 1960. · Zbl 0096.33203 · doi:10.2140/pjm.1960.10.673
[20] G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771-779, 1986. · Zbl 0613.54029 · doi:10.1155/S0161171286000935 · eudml:46151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.