×

Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties. (English) Zbl 1242.65015

Summary: We consider the simulation of probabilistic chemical reactions in isothermal and adiabatic conditions. Models for reactions under isothermal conditions result in advection equations, adiabatic conditions yield the reactive Euler equations. In order to treat with scattering data, the equations are projected onto the polynomial chaos space. Scattering data can largely affect the estimation of quantities in the system, including variable optimization. This is demonstrated on a selective non-catalytic reduction of nitric oxide.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
80A32 Chemically reacting flows
65P20 Numerical chaos
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson, J.D., Hypersonic and high temperature gas dynamics, (2006), AIAA
[2] Annamalai, K.; Puri, I.K., Combustion science and engineering, (2007), Taylor & Francis Group · Zbl 1112.80001
[3] F. Augustin Zur Numerik des Polynomiellen Chaos bei Differentialgleichungen, Master thesis, Techn. Universität München (Fachbereich Mathematik, Prof. Rentrop), April 2007.
[4] Augustin, F.; Gilg, A.; Paffrath, M.; Rentrop, P.; Wever, U., Polynomial chaos for the approximation of uncertainties: chances and limits, European journal of applied mathematics, 19, 149-190, (2008) · Zbl 1148.65004
[5] Cameron, R.H.; Martin, W.T., The orthogonal development of nonlinear functionals in series of fourier – hermite functionals, Ann. math. bd., 48, April (2), 385-392, (1947) · Zbl 0029.14302
[6] Chorin, A.J.; Marsden, J.E., A mathematical introduction to fluid mechanics, (2000), Springer-Verlag · Zbl 0712.76008
[7] Drbal, L.F.; Boston, P.G.; Westra, K.L., Power plant engineering, (1995), Springer-Verlag Berlin
[8] W. Duo, Kinetic studies of the reactions involved in the selective non-catalytic reduction of nitric oxide, Phd thesis, Technical University of Denmark, 1990.
[9] Froment, G.F.; Bischoff, K.B., Chemical reactor analysis and design, (1990), John Wiley & Sons
[10] Ghanem, R.G., Ingredients for a general purpose stochastic finite elements implementation, Comput. methods appl. eng., 168, 19-34, (1999) · Zbl 0943.65008
[11] Ghanem, R.G.; Spanos, P.D., Stochastic finite elements: A spectral approach, (1991), Springer-Verlag · Zbl 0953.74608
[12] M. Herzog, Zur Numerik von stochastischen Störungen in der Finiten Elemente Methode, Diplomarbeit, Techn. Universität München (Fachbereich Mathematik, Prof. Rentrop), Dezember 2005.
[13] Hirsch, C., Numerical computation of internal and external flows, vol. 1, (1988), John Wiley & Sons
[14] Hirsch, C., Numerical computation of internal and external flows, vol. 2, (1995), John Wiley & Sons
[15] A. Hmaidi, Modeling and numerical simulations of reactive 1-D, Euler gas equations, Bachelor’s thesis, Techn. Universität München (Fachbereich Mathematik, Prof. Rentrop), September 2005.
[16] Hundsdorfer, W.; Verwer, J.G., Numerical solution of time-dependent advection-diffusion-reaction equations, (2003), Springer-Verlag · Zbl 1030.65100
[17] Ingham, J., Chemical engineering dynamics, (2007), Wiley-VCH
[18] Janson, S., Gaussian Hilbert spaces, (1997), Cambridge University Press · Zbl 0887.60009
[19] G.E. Karniadakis, C.-H. Su, D. Xiu, D. Lucor, C. Schwab, R.A. Todor, Generalized polynomial chaos solution for differential equations with random inputs, Report Nr. 2005-01, ETH Zürich, Seminar für Angewandte Mathematik, January 2005.
[20] Leveque, R.J., Finite volume methods for hyperbolic problems, (2002), Cambridge University Press · Zbl 1010.65040
[21] Liu, J., Monte Carlo strategies in scientific computing, (2001), Springer-Verlag · Zbl 0991.65001
[22] Luyben, W.L., Chemical reactor design and control, (2007), John Wiley & Sons
[23] Le Maître, O.P.; Knio, O.M., Spectral methods for uncertainty quantification with applications to computational fluid dynamics, (2010), Springer-Verlag · Zbl 1193.76003
[24] Morokoff, W.J.; Caflisch, Russel E., Quasi-Monte Carlo integration, J. comput. phys., 122, 218-230, (1995) · Zbl 0863.65005
[25] Nist Scientific Databases NIST Chemistry WebBook, available at http://webbook.nist.gov/chemistry/.
[26] Østberg, M.; Dam-Johansen, K., Empirical modeling of the selective non-catalytic reduction of NO: comparison with large-scale experiments and detailed kinetic modeling, Chem. eng. sci., 49, 12, 1897-1904, (1994)
[27] Paffrath, M.; Wever, U., Adapted polynomial chaos expansion for failure detection, J. comput. phys., 263-281, (2007) · Zbl 1124.65011
[28] Reagan, M.T.; Najm, H.N.; Pébay, P.P.; Knio, O.M.; Ghanem, R.G., Quantifying uncertainty in chemical systems modeling, Int. J. chem. kinet., 37, 6, 368-382, (2005)
[29] M. Teigeler, Nicht-katalytische Reduzierung der Stickoxidemission am NFZ-Dieselmotor, Phd thesis, Universität Kaiserslautern (Fachbereich Maschinenbau und Verfahrenstechnik), 1998.
[30] M. Villegas, Numerical simulation of reactive flows via polynomial chaos, Master thesis, Techn. Universität München (Fachbereich Mathematik, Prof. Rentrop), August 2008.
[31] Warnatz, J.; Maas, U.; Dibble, R.W., Verbrennung, (2001), Springer-Verlag
[32] Wiener, N., The homogeneous chaos, Am. J. math., 60, 897-936, (1938) · JFM 64.0887.02
[33] Xiu, D.; Karniadakis, G.E., The wiener – askey polynomial chaos for stochastic differential equations, SIAM J. sci. comput., 24, 2, 619-644, (2002) · Zbl 1014.65004
[34] Xiu, D.; Karniadakis, G.E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. comput. phys., 187, 137-167, (2003) · Zbl 1047.76111
[35] Zeldovich, Y.B., The oxidation of nitrogen in combustion and explosions, Acta physicochim. U.R.S.S., 21, 4, 577-628, (1946)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.