×

Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. (English) Zbl 1242.65124

Summary: A Rosenbrock artificial bee colony algorithm (RABC) that combines Rosenbrock’s rotational direction method with an artificial bee colony algorithm (ABC) is proposed for accurate numerical optimization. There are two alternative phases of RABC: the exploration phase realized by ABC and the exploitation phase completed by the rotational direction method. The proposed algorithm was tested on a comprehensive set of complex benchmark problems, encompassing a wide range of dimensionality, and it was also compared with several algorithms. Numerical results show that the new algorithm is promising in terms of convergence speed, success rate, and accuracy. The proposed RABC is also capable of keeping up with the direction changes in the problems.

MSC:

65K10 Numerical optimization and variational techniques
90C59 Approximation methods and heuristics in mathematical programming

Software:

GSA ; minpack; CIXL2; ABC ; JADE
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akay, B.; Karaboga, D., A modified artificial bee colony algorithm for real-parameter optimization, Information sciences, (2010)
[2] Akbari, R.; Mohammadi, A.; Ziarati, K., A novel bee swarm optimization algorithm for numerical function optimization, Communication in nonlinear science and numerical simulation, 15, 10, 3142-3155, (2010) · Zbl 1222.90082
[3] Alatas, B., Chaotic bee colony algorithms for global numerical optimization, Expert systems with applications, 37, 8, 5682-5687, (2010)
[4] Ali, M.M.; Khompatraporn, C.; Zabinsky, Z.B., A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems, Journal of global optimization, 31, 4, 635-672, (2005) · Zbl 1093.90028
[5] Baykasoglu, A.; Ozbakir, L.; Tapkan, P., Artificial bee colony algorithm and its application to generalized assignment problem, (), pp. 113-144
[6] Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S., Stability analysis of the reproduction operator in bacterial foraging optimization, Theoretical computer science, 411, 21, 2127-2139, (2010) · Zbl 1190.90285
[7] Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V., Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE transactions on evolutionary computation, 10, 6, 646-657, (2006)
[8] Caponio, A.; Neri, F.; Tirronen, V., Super-fit control adaptation in memetic differential evolution frameworks, Soft computing - A fusion of foundations, methodologies and applications, 13, 8, 811-831, (2009)
[9] Chelouah, R.; Siarry, P., A continuous genetic algorithm designed for the global optimization of multimodal functions, Journal of heuristics, 6, 2, 191-213, (2000) · Zbl 0969.68641
[10] Chelouah, R.; Siarry, P., Genetic and nelder – mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions, European journal of operational research, 148, 2, 335-348, (2003) · Zbl 1035.90062
[11] Chelouah, R.; Siarry, P., A hybrid method combining continuous tabu search and nelder – mead simplex algorithms for the global optimization of multiminima functions, European journal of operational research, 161, 3, 636-654, (2005) · Zbl 1071.90035
[12] Das, S.; Dasgupta, S.; Biswas, A.; Abraham, A.; Konar, A., On stability of chemotactic dynamics in bacterial-foraging optimization algorithm, IEEE transactions on systems man and cybernetics part A - systems and humans, 39, 3, 670-679, (2009)
[13] Dasgupta, S.; Das, S.; Abraham, A.; Biswas, A., Adaptive computational chemotaxis in bacterial foraging optimization: an analysis, IEEE transactions on evolutionary computation, 13, 4, 919-941, (2009)
[14] Dong, H.B.; He, J.; Huang, H.K.; Hou, W., Evolutionary programming using a mixed mutation strategy, Information sciences, 177, 1, 312-327, (2007) · Zbl 1142.68469
[15] García-Martínez, C.; Lozano, M.; Herrera, F.; Molina, D.; Sánchez, A.M., Global and local real-coded genetic algorithms based on parent-centric crossover operators, European journal of operational research, 185, 3, 1088-1113, (2008) · Zbl 1146.90532
[16] Georgieva, A.; Jordanov, I., A hybrid meta-heuristic for global optimization using low-discrepancy sequences of points, Computers & operations research, 37, 3, 456-469, (2010) · Zbl 1189.90123
[17] Gong, M.G.; Jiao, L.C.; Zhang, L.N., Baldwinian learning in clonal selection algorithm for optimization, Information sciences, 180, 8, 1218-1236, (2010)
[18] Gould, J.L.; Gould, C.G., The honey bee, (1988), Scientific American Library New York
[19] Hedar, A.; Fukushima, M., Tabu search directed by direct search methods for nonlinear global optimization, European journal of operational research, 170, 2, 329-349, (2006) · Zbl 1093.90091
[20] Herrera, F.; Lozano, M.; Sánchez, A.M., A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study, International journal of intelligent systems, 18, 3, 309-338, (2003) · Zbl 1048.68067
[21] Hsieh, S.T.; Sun, T.Y.; Lin, C.L.; Liu, C.C., Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer, IEEE transactions on evolutionary computation, 12, 2, 242-251, (2008)
[22] Huang, H.; Qin, H.; Hao, Z.; Lim, A., Example-based learning particle swarm optimization for continuous optimization, Information sciences, (2010)
[23] Hvattum, L.M.; Glover, F., Finding local optima of high-dimensional functions using direct search methods, European journal of operational research, 195, 1, 31-45, (2009) · Zbl 1156.90440
[24] Ji, M.; Tang, H.; Guo, J., A single-point mutation evolutionary programming, Information processing letters, 90, 6, 293-299, (2004) · Zbl 1176.90442
[25] Ji, M.; Yang, H.; Yang, Y.; Jin, Z., A single component mutation evolutionary programming, Applied mathematics and computation, 215, 10, 3759-3768, (2010) · Zbl 1183.65066
[26] F. Kang, J. Li, H. Li, Z. Ma, Q. Xu, An improved artificial bee colony algorithm, In: IEEE 2nd International Workshop on Intelligent Systems and Applications, Wuhan, China, 2010, pp. 791-794.
[27] Kang, F.; Li, J.; Xu, Q., Structural inverse analysis by hybrid simplex artificial bee colony algorithms, Computers & structures, 87, 13-14, 861-870, (2009)
[28] Kang, F.; Li, J.; Xu, Q., Virus coevolution partheno-genetic algorithms for optimal sensor placement, Advanced engineering informatics, 22, 3, 362-370, (2008)
[29] Kao, Y.T.; Zahara, E., A hybrid genetic algorithm and particle swarm optimization for multimodal functions, Applied soft computing, 8, 2, 849-857, (2008)
[30] D. Karaboga, An Idea based on Bee Swarm for Numerical Optimization, Tech. Rep. TR-06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[31] Karaboga, D.; Basturk, B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization, 39, 3, 459-471, (2007) · Zbl 1149.90186
[32] Karaboga, D.; Basturk, B., On the performance of artificial bee colony (ABC) algorithm, Applied soft computing, 8, 1, 687-697, (2008)
[33] Karaboga, D.; Akay, B., A comparative study of artificial bee colony algorithm, Applied mathematics and computation, 214, 1, 108-132, (2009) · Zbl 1169.65053
[34] Korošec, P.; Šilc, J.; Filipič, B., The differential ant-stigmergy algorithm, Information sciences, (2010)
[35] Laguna, M.; Martí, R., Experimental testing of advanced scatter search designs for global optimization of multimodal functions, Journal of global optimization, 33, 2, 235-255, (2005) · Zbl 1093.90092
[36] Le, M.N.; Ong, Y.S.; Jin, Y.; Sendhoff, B., Lamarckian memetic algorithms: local optimum and connectivity structure analysis, Memetic computing, 1, 3, 175-190, (2009)
[37] Lewisa, R.M.; Torczona, V.; Trossetc, M.W., Direct search methods: then and now, Journal of computational and applied mathematics, 124, 1-2, 191-207, (2000) · Zbl 0969.65055
[38] Liang, J.J.; Qin, A.K.; Suganthan, P.N., Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE transactions on evolutionary computation, 10, 3, 281-295, (2006)
[39] Li, X.; Luo, J.; Chen, M.; Wang, N., An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation, Information sciences, (2010)
[40] Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D., Real-coded memetic algorithms with crossover Hill-climbing, Evolutionary computation, 12, 3, 273-302, (2004)
[41] Ma, H.; Liao, C., An analysis of the equilibrium of migration models for biogeography-based optimization, Information sciences, 180, 18, 3444-3464, (2010) · Zbl 1194.92073
[42] Marinakis, Y.; Marinaki, M.; Dounias, G., Honey bees mating optimization algorithm for the Euclidean traveling salesman problem, Information sciences, (2010)
[43] Mezura-Montes, E.; Miranda-Varela, M.E.; del Carmen Gómez-Ramón, R., Differential evolution in constrained numerical optimization: an empirical study, Information sciences, 180, 22, 4223-4262, (2010) · Zbl 1206.90226
[44] Moré, J.J.; Garbow, B.S.; Hillstrom, K.E., Testing unconstrained optimization software, ACM transactions on mathematical software, 7, 1, 17-41, (1981) · Zbl 0454.65049
[45] Munoz, M.A.; López, J.A.; Caicedo, E., An artificial beehive algorithm for continuous optimization, International journal of intelligent systems, 24, 11, 1080-1093, (2009) · Zbl 1187.90328
[46] Neri, F.; Toivanen, J.; Cascella, G.L.; Ong, Y.S., An adaptive multimeme algorithm for designing HIV multidrug therapies, IEEE/ACM transactions on computational biology and bioinformatics, 4, 2, 264-278, (2007)
[47] Neri, F.; Mininno, E., Memetic compact differential evolution for Cartesian robot control, IEEE computational intelligence magazine, 5, 2, 54-65, (2010)
[48] Nguyen, Q.C.; Ong, Y.S.; Lim, M.H., A probabilistic memetic framework, IEEE transactions on evolutionary computation, 13, 3, 604-623, (2009)
[49] Ong, Y.S.; Keane, A.J., Meta-Lamarckian learning in memetic algorithm, IEEE transactions on evolutionary computation, 8, 2, 99-110, (2004)
[50] Ortiz-Boyer, D.; Hervás-Martınez, C.; García-Pedrajas, N., CIXL2: a crossover operator for evolutionary algorithms based on population features, Journal of artificial intelligence research, 24, 1, 1-48, (2005) · Zbl 1123.62053
[51] Palmer, J.R., An improved procedure for orthogonalising the search vectors in rosenbrock’s and swann’s direct search optimisation methods, The computer journal, 12, 1, 69-71, (1969) · Zbl 0164.46105
[52] Pan, Q.K.; Tasgetiren, M.F.; Suganthan, P.N.; Chua, T.J., A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem, Information sciences, 181, 12, 2455-2468, (2011)
[53] Price, K.; Storn, R.M.; Lampinen, J.A., Differential evolution: A practical approach to global optimization, (2005), Springer New York · Zbl 1186.90004
[54] A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: Proceedings of the IEEE Conference on Evolutionary Computation, Edinburgh, Scotland, September 2005, pp. 1785-1791.
[55] Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A., Opposition-based differential evolution, IEEE transactions on evolutionary computation, 12, 1, 64-79, (2008)
[56] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S., GSA: a gravitational search algorithm, Information sciences, 179, 13, 2232-2248, (2009) · Zbl 1177.90378
[57] Rosenbrock, H.H., An automatic method for finding the greatest or least value of a function, The computer journal, 3, 3, 175-184, (1960)
[58] Sánchez, A.M.; Lozano, M.; García-Martínez, C.; Molina, D.; Herrera, F., Real-parameter crossover operators with multiple descendents: an experimental study, International journal of intelligent systems, 23, 2, 246-268, (2008) · Zbl 1140.68543
[59] Sánchez, A.M.; Lozano, M.; Villar, P.; Herrera, F., Hybrid crossover operators with multiple descendents for real-coded genetic algorithms: combining neighborhood-based crossover operators, International journal of intelligent systems, 24, 5, 540-567, (2009) · Zbl 1178.68651
[60] Seeley, T.D., The wisdom of the hive, (1995), Harvard University Press MA, Cambridge
[61] Shi, Y.; Liu, H.; Gao, L.; Zhang, G., Cellular particle swarm optimization, Information sciences, (2010)
[62] Smith, J.E., Co-evolving memetic algorithms: a review and progress report, IEEE transactions on systems man and cybernetics part B - cybernetics, 37, 1, 6-17, (2007)
[63] Socha, K.; Dorigo, M., Ant colony optimization for continuous domains, European journal of operational research, 185, 3, 1155-1173, (2008) · Zbl 1146.90537
[64] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization, 11, 4, 341-359, (1997) · Zbl 0888.90135
[65] Sundar, S.; Singh, A., A swarm intelligence approach to the quadratic minimum spanning tree problem, Information sciences, 180, 17, 3182-3191, (2010)
[66] Ting, C.; Liao, C., A memetic algorithm for extending wireless sensor network lifetime, Information sciences, 180, 24, 4818-4833, (2010)
[67] Tirronen, V.; Neri, F.; Karkkainen, T.; Majava, K.; Rossi, T., An enhanced memetic differential evolution in filter design for defect detection in paper production, Evolutionary computation, 16, 4, 529-555, (2008)
[68] Toscano, R.; Lyonnet, P., A new heuristic approach for non-convex optimization problems, Information sciences, 180, 10, 1955-1966, (2010) · Zbl 1198.90331
[69] L. Tseng, C. Chen, Multiple trajectory search for large scale global optimization, in: Proceedings of the IEEE Conference on Evolutionary Computation, 2008, pp. 3052-3059.
[70] Wang, Y.; Li, B.; Weise, T.; Wang, J.; Yuan, B.; Tian, Q., Self-adaptive learning based particle swarm optimization, Information sciences, (2010)
[71] Whitley, D.; Rana, D.; Dzubera, J.; Mathias, E., Evaluating evolutionary algorithms, Artificial intelligence, 85, 1-2, 245-276, (1996)
[72] Yao, X.; Liu, Y.; Lin, G., Evolutionary programming made faster, IEEE transactions on evolutionary computation, 3, 2, 82-102, (1999)
[73] Yu, E.L.; Suganthan, P.N., Ensemble of niching algorithms, Information sciences, 180, 15, 2815-2833, (2010)
[74] Zhang, J.; Sanderson, A.C., JADE: adaptive differential evolution with optional external archive, IEEE transactions on evolutionary computation, 13, 5, 945-958, (2009)
[75] Zhu, G.; Kwong, S., Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied mathematics and computation, 217, 7, 3166-3173, (2010) · Zbl 1204.65074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.