×

zbMATH — the first resource for mathematics

A dual-primal FETI method for solving a class of fluid-structure interaction problems in the frequency domain. (English) Zbl 1242.74136
Summary: The dual-primal finite element tearing and interconnecting method (FETI-DP) is extended to systems of linear equations arising from a finite element discretization for a class of fluid-structure interaction problems in the frequency domain. A preconditioned generalized minimal residual method is used to solve the linear equations for the Lagrange multipliers introduced on the subdomain boundaries to enforce continuity of the solution. The coupling between the fluid and the structure on the fluid-structure interface requires an appropriate choice of coarse level degrees of freedom in the FETI-DP algorithm to achieve fast convergence. Several choices are proposed and tested by numerical experiments on three-dimensional fluid-structure interaction problems in the mid-frequency regime that demonstrate the greatly improved performance of the proposed algorithm over the standard FETI-DP method.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Software:
ACME; MUMPS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Morand, Fluid Structure Interaction (1995)
[2] Ohayon, Structural Acoustics and Vibration (1998)
[3] Farhat, A scalable dual-primal domain decomposition method, Numerical Linear Algebra with Applications 7 pp 687– (2000) · Zbl 1051.65119 · doi:10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
[4] Farhat, FETI-DP: a dual-primal unified FETI method - part I: a faster alternative to the two-level FETI method, International Journal for Numerical Methods in Engineering 50 pp 1523– (2001) · Zbl 1008.74076 · doi:10.1002/nme.76
[5] Farhat, An iterative domain decomposition method for the solution of a class of indefinite problems in computational structural dynamics, Applied Numerical Mathematics 54 pp 150– (2005) · Zbl 1086.74039 · doi:10.1016/j.apnum.2004.09.021
[6] Farhat, A FETI-DP method for the parallel iterative solution of indefinite and complex-valued solid and shell vibration problems, International Journal for Numerical Methods in Engineering 63 pp 398– (2005) · Zbl 1140.74550 · doi:10.1002/nme.1282
[7] Farhat, A dual-primal domain decomposition method for acoustic scaterring, Journal of Computational Acoustics 13 pp 499– (2005) · Zbl 1189.76338 · doi:10.1142/S0218396X05002761
[8] Dey, A parallel hp-FEM infrastructure for three-dimensional structural acoustics, International Journal for Numerical Methods in Engineering 68 pp 583– (2006) · Zbl 1178.76227 · doi:10.1002/nme.1730
[9] Walsh TF Reese GM Pierson KH Sumali H Dohner JL Day DM Computational and experimental techniques for coupled acoustic/structure interactions Technical Report SAND2003-4381 2004
[10] Farhat, A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems, Numerische Mathematik 85 pp 283– (2000) · Zbl 0965.65133 · doi:10.1007/PL00005389
[11] Mandel, An iterative substructuring method for coupled fluid-solid acoustic problems, Journal of Computational Physics 177 pp 95– (2002) · Zbl 1120.74450 · doi:10.1006/jcph.2002.7004
[12] Farhat, A method of finite element tearing and interconnecting and its parallel solution algorithm, International Journal for Numerical Methods in Engineering 32 pp 1205– (1991) · Zbl 0758.65075 · doi:10.1002/nme.1620320604
[13] Mandel, On the convergence of a dual-primal substructuring method, Numerische Mathematik 88 pp 543– (2001) · Zbl 1003.65126 · doi:10.1007/s211-001-8014-1
[14] Klawonn, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM Journal on Numerical Analysis 40 pp 159– (2002) · Zbl 1032.65031 · doi:10.1137/S0036142901388081
[15] Bhardwaj M Pierson K Reese G Walsh T Day D Farhat C Lesoinne M Salinas: a scalable software for high-performance structrual and solid mechanics simulations Proceedings of the IEEE/ACM SC2002 Conference 2002
[16] Lesoinne M A FETI-DP corner selection algorithm for three-dimensional problems Domain Decomposition Methods in Science and Engineering, Proc. of the 14th International Conference on Domain Decomposition Methods 2003 217 223
[17] Farhat, A unified framework for accelerating the convergence of iterative substructuring methods with Lagrange multipliers, International Journal for Numerical Methods in Engineering 42 pp 257– (1998) · Zbl 0907.73059 · doi:10.1002/(SICI)1097-0207(19980530)42:2<257::AID-NME361>3.0.CO;2-R
[18] Klawonn, Dual-primal FETI methods for linear elasticity, Communications on Pure and Applied Mathematics 59 pp 1523– (2006) · Zbl 1110.74053 · doi:10.1002/cpa.20156
[19] Li, Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems, Numerical Linear Algebra with Applications 16 pp 745– (2009) · Zbl 1224.65248 · doi:10.1002/nla.639
[20] Brown KH Glass MW Gullerud AS Heinstein MW Jones RE Voth TE ACME: algorithms for contact in a multiphysics environment API version 1.3 Technical Report SAND2003-1470 2003
[21] Boer, Review of coupling methods for non-matching meshes, Computer Methods in Applied Mechanics and Engineering 196 pp 1515– (2007) · Zbl 1173.74485 · doi:10.1016/j.cma.2006.03.017
[22] Amestoy, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 pp 15– (2001) · Zbl 0992.65018 · doi:10.1137/S0895479899358194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.