×

zbMATH — the first resource for mathematics

Studies of shock/turbulent shear layer interaction using large eddy simulation. (English) Zbl 1242.76063
Summary: Shock/shear/turbulence interactions are simulated using Large Eddy Simulation (LES) with a new localized subgrid closure approach. Both normal and oblique shocks interactions with turbulence are considered. The LES methodology adopted here combines a hybrid numerical scheme that switches automatically and locally between a shock-capturing scheme and a low-dissipation high-order central scheme.

MSC:
76F10 Shear flows and turbulence
76L05 Shock waves and blast waves in fluid mechanics
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX Cite
Full Text: DOI
References:
[1] Andreopoulos, Y.; Agui, J.H.; Briassulis, G., Shock wave – turbulence interactions, Annu rev fluid mech, 32, 309-345, (2000) · Zbl 0988.76048
[2] Barre, S.; Alem, D.; Bonnet, J.P., Experimental study of a normal shock/homogeneous turbulence interaction, Aiaa j, 34, 5, 968-974, (1996)
[3] Agui, J.H.; Briassulis, G.; Andreopoulos, Y., Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields, J fluid mech, 524, 143-195, (2005) · Zbl 1060.76500
[4] Hannappel, R.; Friedrich, R., Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence, Appl sci res, 54, 205-221, (1995) · Zbl 0853.76047
[5] Lee, S.; Lele, S.K.; Moin, P., Interaction of isotropic turbulence with shock waves: effect of shock strength, J fluid mech, 340, 225-247, (1997) · Zbl 0899.76194
[6] Mahesh, K.; Lele, S.K.; Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave, J fluid mech, 334, 353-379, (1997) · Zbl 0899.76193
[7] Jamme, S.; Cazalbou, J.; Torres, F.; Chassaing, P., Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence, Flow turb combust, 68, 3, 227-268, (2002) · Zbl 1051.76576
[8] Lele, S.K.; Larsson, J., Shock – turbulence interaction: what we know and what we can learn from peta-scale simulations, J phys: conf ser, 180, 012032, (2009), 10pp
[9] Sesterhenn, J.; Dohogne, J.-F.; Friedrich, R., Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-Fitting, C R mecanique, 333, 87-94, (2005) · Zbl 1223.76034
[10] Jamme S, Crespo M, Chassaing P. Direct numerical simulation of the interaction between a shock wave and anisotropic turbulence. AIAA 2005-4886.
[11] Menon S. Shock-wave-induced mixing enhancement in scramjet combustors. AIAA 89-0104.
[12] Brummund U, Nuding JR. Interaction of a compressible shear layer with shock waves – an experimental study. AIAA 97-0392.
[13] Parent, B.; Sislian, J.P., Hypersonic mixing enhancement by compression at a high convective Mach number, Aiaa j, 42, 4, 787-795, (2004)
[14] Kim, J.-H.; Yoon, Y.; Jeung, I.-S.; Huh, H.; Choi, J.-Y., Numerical study of mixing enhancement by shock waves in model scramjet engine, Aiaa j, 41, 6, 1074-1080, (2003)
[15] Drummond JP, Mukunda HS. A numerical study of mixing enhancement in supersonic reacting flow fields. AIAA 88-3260.
[16] Shau, Y.R.; Dolling, D.S.; Choi, K.Y., Organized structure in a compressible turbulent shear layer, Aiaa j, 31, 8, 1398-1405, (1993)
[17] Buttsworth, D.R., Interaction of oblique shock waves and planar mixing regions, J fluid mech, 306, 43-57, (1996) · Zbl 0864.76043
[18] Garnier, E.; Sagaut, P.; Deville, M., Large eddy simulation of shock/homogeneous turbulence interaction, Comput fluids, 31, 245-268, (2002) · Zbl 1059.76032
[19] Dubois, T.; Domaradzki, J.A.; Honein, A., The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence, Phys fluids, 14, 1781-1801, (2002) · Zbl 1185.76114
[20] Adams, N.A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J comput phys, 127, 27-51, (1996) · Zbl 0859.76041
[21] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J comput phys, 178, 81-117, (2002) · Zbl 1045.76029
[22] Hill, D.J.; Pullin, D.I., Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J comput phys, 194, 435-450, (2004) · Zbl 1100.76030
[23] Vreman B. Direct and large-eddy simulation of the compressible turbulent mixing layer. PhD thesis, Universiteit Twente; 1997. · Zbl 0900.76369
[24] Gordon, S.; McBride, B.J., Computer program for calculation of complex chemical equilibrium compositions and applications, vol. 1311, (1994), NASA Reference Publication NASA
[25] Fureby, C.; Moller, S.I., Large-eddy simulations of reacting flows applied to bluff-body stabilized flames, Aiaa j, 33, 2339, (1995) · Zbl 0850.76800
[26] Ristorcelli, J.R., A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence, J fluid mech, 347, 37-70, (1997) · Zbl 0941.76038
[27] Kim, W.-W.; Menon, S.; Mongia, H.C., Large eddy simulations of a gas turbine combustor flow, Combust sci technol, 143, 25-62, (1999)
[28] Dussauge J-P. Compressible turbulence of supersonic flows: actions and interactions. In: Proceedings of the symposium turbulence and interactions, Porquerolles, France; May 29-June 02. · Zbl 1094.76524
[29] Menon, S.; Patel, N., Subgrid modeling for simulation of spray combustion in large-scale combustors, Aiaa j, 44, 4, 709-723, (2006)
[30] Nelson CC, Menon S. Unsteady simulations of compressible spatial mixing layers. AIAA paper 98-0786.
[31] Srinivasan S, Girgis B, Menon S. Large-eddy simulation of a combustion powered actuator. AIAA paper 2008-4680.
[32] van Leer, B., Towards the ultimate conservative difference scheme V. A second order sequel to godunov’s method, J comput phys, 32, 101-136, (1979) · Zbl 1364.65223
[33] Colella, P.; Woodward, P., The piecewise-parabolic method for hydrodynamics, J comput phys, 54, 174-201, (1984) · Zbl 0531.76082
[34] Toro, E.F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock waves, 4, 25-34, (1994) · Zbl 0811.76053
[35] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J numer anal, 25, 2, 294-318, (1988) · Zbl 0642.76088
[36] Poinsot, T.; Lele, S., Boundary conditions for direct simulations of compressible viscous flow, J comput phys, 101, 104-129, (1992) · Zbl 0766.76084
[37] Lee, S.; Lele, S.K.; Moin, P., Simulation of spatially evolving turbulence and the applicability of taylor’s hypothesis in compressible flow, Phys fluids, 4, 1521, (1992) · Zbl 0825.76346
[38] Masquelet M, Menon S. Large-eddy simulation of flame – turbulence interactions in a \(\mathit{gh}_2 - \mathit{go}_2\) shear coaxial injector. AIAA paper 2008-5030.
[39] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J comput phys, 83, 32, (1989) · Zbl 0674.65061
[40] Inoue, O.; Hattori, Y., Sound generated by shock – vortex interactions, J fluid mech, 380, 81-116, (1999) · Zbl 0953.76080
[41] Dosanjh, D.S.; Weeks, T.M., Interaction of a starting vortex as well as a vortex street with a traveling shock wave, Aiaa j, 3, 2, 216-223, (1965) · Zbl 0125.16403
[42] Ellzey, J.L.; Henneke, M.R.; Picone, J.M.; Oran, E.S., The interaction of a shock with a vortex: shock distortion and the production of acoustic waves, Phys fluids, 7, 1, 172-184, (1995)
[43] Moin, P.; Squires, W.; Cabot, W.; Lee, S., A dynamic sub-grid scale model for compressible turbulence and scalar transport, Phys fluids, 3, 11, 2746-2757, (1991) · Zbl 0753.76074
[44] Slessor, M.D.; Zhuang, M.; Dimotakis, P.E., Turbulent shear-layer mixing: growth-rate compressibility scaling, J fluid mech, 414, 35-45, (2000) · Zbl 0955.76041
[45] Goebel, S.G.; Dutton, J.C., Experimental study of compressible turbulent mixing layers, Aiaa j, 29, 538-546, (1991)
[46] Gaviglio, J.; Dussauge, J.-P.; Debieve, J.-F.; Favre, A., Behavior of a turbulent flow, strongly out of equilibrium, at supersonic speeds, Phys fluids, 20, 10, S179-S192, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.