An explicit Chebyshev pseudospectral multigrid method for incompressible Navier-Stokes equations. (English) Zbl 1242.76224

Summary: The two-dimensional steady incompressible Navier-Stokes equations in the form of primitive variables have been solved by Chebyshev pseudospectral method. The pressure and velocities are coupled by artificial compressibility method and the NS equations are solved by pseudotime method with an explicit four-step Runge-Kutta integrator. In order to reduce the computational time cost, we propose the spectral multigrid algorithm in full approximation storage (FAS) scheme and implement it through V-cycle multigrid and full multigrid (FMG) strategies. Four iterative methods are designed including the single grid method; the full single grid method; the V-cycle multigrid method and the FMG method. The accuracy and efficiency of the numerical methods are validated by three test problems: the modified one-dimensional Burgers equation; the Taylor vortices and the two-dimensional lid driven cavity flow. The computational results fit well with the exact or benchmark solutions. The spectral accuracy can be maintained by the single grid method as well as the multigrid ones, while the time cost is greatly reduced by the latter. For the lid driven cavity flow problem, the FMG is proved to be the most efficient one among the four iterative methods. A speedup of nearly two orders of magnitude can be achieved by the three-level multigrid method and at least one order of magnitude by the two-level multigrid method.


76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids


Full Text: DOI


[1] Albensoeder, S.; Kuhlmann, H.C., Accurate three-dimensional lid-driven cavity flow, J comput phys, 206, 536-558, (2005) · Zbl 1121.76366
[2] Borzi, A.; Hohenester, U., Multigrid optimization schemes for solving bose – einstein condensate control problems, SIAM J sci comput, 30, 441-462, (2007) · Zbl 1168.35420
[3] Botella, O., On the solution of the navier – stokes equations using Chebyshev projection schemes with third-order accuracy in time, Comput fluids, 26, 107-116, (1997) · Zbl 0898.76077
[4] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput fluids, 27, 421-433, (1998) · Zbl 0964.76066
[5] Boyd, J.P., Chebyshev and Fourier spectral method (2nd revised edition), (2001), Dover New York
[6] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math comput, 31, 333-390, (1977) · Zbl 0373.65054
[7] Brandt, A.; Fulton, S.R.; Taylor, G.D., Improved spectral multigrid methods for periodic elliptic problems, J comput phys, 58, 96-112, (1985) · Zbl 0569.65084
[8] Bruneau, C.H.; Jouron, C., An efficient scheme for solving steady incompressible navier – stokes equations, J comput phys, 89, 389-413, (1990) · Zbl 0699.76034
[9] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1987), Springer-Verlag New York · Zbl 0636.76009
[10] Chorin, A.J., A numerical method for solving incompressible viscous flow problems, J comput phys, 2, 12-26, (1967) · Zbl 0149.44802
[11] Chou, M.H., A multigrid pseudospectral method for steady flow computation, Int J numer methods fluids, 43, 25-42, (2003) · Zbl 1032.76648
[12] Deng, G.B.; Piquet, J.; Queutey, P.; Visonneau, M., Incompressible flow calculations with a consistent physical interpolation finite volume approach, Comput fluids, 23, 1029-1047, (1994) · Zbl 0816.76066
[13] Dimitropoulos, C.D.; Edwards, B.J.; Chae, K.S.; Beris, A.N., Efficient pseudospectral flow simulations in moderately complex geometries, J comput phys, 144, 517-549, (1998) · Zbl 0929.76094
[14] Gauthier, S., A semi-implicit collocation method: application to thermal convection in 2D compressible fluids, Int J numer methods fluids, 12, 985-1002, (1991) · Zbl 0724.76069
[15] Ghia, U.; Ghia, K.N.; Shin, C.T., High-re solutions for incompressible flow using the navier – stokes equations and a multigrid method, J comput phys, 48, 387-411, (1982) · Zbl 0511.76031
[16] Gjesdal, T.; Wasberg, C.E.; Reif, B.A.P., Spectral element benchmark simulations of natural convection in two-dimensional cavities, Int J numer methods fluids, 50, 1297-1319, (2006) · Zbl 1090.76051
[17] Gong, Q.; Fahroo, F.; Ross, I.M., Spectral algorithm for pseudospectral methods in optimal control, AIAA J guid control dyn, 31, 460-471, (2008)
[18] Guillard, H.; Male, J.M.; Peyret, R., Adaptive spectral methods with application to mixing layer computations, J comput phys, 102, 114-127, (1992) · Zbl 0759.76058
[19] Gupta, M.M.; Manohar, R.P.; Noble, B., Nature of viscous flows near sharp corners, Comput fluids, 9, 379-388, (1981) · Zbl 0479.76041
[20] Hancock, C.; Lewis, E.; Moffatt, H.K., Effects of inertia in forced corner flows, J fluid mech, 112, 315-327, (1981) · Zbl 0488.76033
[21] Heinrichs, W., A 3D spectral multigrid method, Appl math comput, 41, 117-128, (1991) · Zbl 0714.65090
[22] Heinrichs, W., Spectral multigrid techniques for the navier – stokes equations, Comput method appl M, 106, 297-314, (1993) · Zbl 0783.76071
[23] Heinrichs, W., Splitting techniques for the unsteady Stokes equations, SIAM J numer anal, 35, 1646-1662, (1998) · Zbl 0911.76058
[24] Heinrichs, W.; Kattelans, T., A direct solver for the least-squares spectral collocation system on rectangular elements for the incompressible navier – stokes equations, J comput phys, 227, 4776-4796, (2008) · Zbl 1193.76096
[25] Jameson A. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper. p. 81-1259.
[26] Ku, H.C.; Hirsh, R.S.; Taylor, T.D., A pseudospectral method for solution of the three-dimensional incompressible navier – stokes equations, J comput phys, 70, 439-462, (1987) · Zbl 0658.76027
[27] Ku, H.C.; Taylor, T.D.; Hirsh, R.S., Pseudospectral methods for solution of the incompressible navier – stokes equations, Comput fluids, 15, 195-214, (1987) · Zbl 0622.76028
[28] Krastev, K.; Schäfer, M., A multigrid pseudo-spectral method for incompressible navier – stokes flows, C R mecanique, 333, 59-64, (2005) · Zbl 1223.76046
[29] Kwak, D.; Chakravarthy, S.R., A three-dimensional incompressible navier – stokes flow solver using primitive variables, Aiaa j, 24, 390-396, (1986) · Zbl 0587.76044
[30] Lilek, Z.; Muzaferija, S.; Peric, M., Efficiency and accuracy aspects of a full-multigird simple algorithm for three-dimensional flows, Numer heat transfer B - fund, 31, 23-42, (1996)
[31] Lottes, J.W.; Fischer, P.F., Hybrid multigrid/Schwarz algorithms for the spectral element method, J sci comput., 24, 613-646, (2005)
[32] Olson, L., Algebraic multigrid preconditioning of high-order spectral elements for elliptic problems on a simplicial mesh, SIAM J sci comput, 29, 2189-2209, (2007) · Zbl 1149.65094
[33] Peyret, R., Spectral methods for incompressible viscous flow, (2002), Springer-Verlag New York · Zbl 1005.76001
[34] Phillips, T.N., Relaxation schemes for spectral multigrid methods, J comput appl math, 18, 149-162, (1987) · Zbl 0625.65112
[35] Pinelli, A.; Vacca, A., Chebyshev collocation method and multidomain decomposition for the incompressible navier – stokes equations, Int J numer methods fluids, 18, 781-799, (1994) · Zbl 0805.76055
[36] Sakell, L., Use of local time stepping with full pseudospectral solutions to the navier – stokes equations of motion for flows with shock waves, Comput math appl, 19, 85-94, (1990) · Zbl 0704.76032
[37] Schultz, W.W.; Lee, N.Y.; Boyd, J.P., Chebyshev pseudospectral method of viscous flows with corner singularities, J sci comput, 4, 1-24, (1989) · Zbl 0679.76042
[38] Trefethen, L.N., Spectral methods in Matlab, (2000), SIAM Philadelphia · Zbl 0953.68643
[39] Vanka, S.P., Block-implicit multigrid solution of navier – stokes equations in primitive variables, J comput phys, 65, 138-158, (1986) · Zbl 0606.76035
[40] Zang, T.A.; Wong, Y.S.; Hussaini, M.Y., Spectral multigrid methods for elliptic equations, J comput phys, 48, 485-501, (1982) · Zbl 0496.65061
[41] Zang, T.A.; Wong, Y.S.; Hussaini, M.Y., Spectral multigrid methods for elliptic equations II, J comput phys, 54, 489-507, (1984) · Zbl 0543.65071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.