×

zbMATH — the first resource for mathematics

Challenges in climate science and contemporary applied mathematics. (English) Zbl 1242.86009
Summary: This article discusses the challenges in climate science from the emerging viewpoint of stochastic-statistical properties of turbulent dynamical systems. The mathematical topics discussed here include empirical information theory, fluctuation-dissipation theorems, reduced-order stochastic modeling, and the development of mathematically unambiguous exactly solvable test models for climate science that capture crucial features of vastly more complex scientific problems. The applied mathematics topics include the emerging development of multiscale algorithms for filtering/data assimilation and superparametrization for climate science and other problems in science and engineering, as well as suitable unambiguous mathematical test problems for their behavior. Interesting contemporary research directions and specific open problems are mentioned throughout the article. The perspective here should also be useful for applications to other complex dynamical systems arising in neural science, material science, and environmental/mechanical engineering.

MSC:
86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
76F99 Turbulence
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
Software:
CRCP
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abramov, Short-time linear response with reduced-rank tangent map, Chin. Ann. Math. Ser. B 30 (5) pp 447– (2009) · Zbl 1189.65302
[2] Abramov, Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems, Nonlinearity 20 (12) pp 2793– (2007) · Zbl 1134.37365
[3] Abramov, New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems, J. Nonlinear Sci. 18 (3) pp 303– (2008) · Zbl 1151.82364
[4] Abramov, A new algorithm for low-frequency climate response, J. Atmospheric Sci. 66 (2) pp 286– (2009)
[5] Abramov, Low frequency climate response of quasigeostrophic wind-driven ocean circulation, J. Phys. Oceanogr.
[6] Abramov, Information theory and predictability for low-frequency variability, J. Atmospheric Sci. 62 (1) pp 65– (2005)
[7] Armaou, Equation-free gaptooth-based controller design for distributed complex/multiscale processes, Comput. Chem. Eng. 29 (4) pp 731– (2005)
[8] Bell, Climate sensitivity from fluctuation dissipation: Some simple model tests, J. Atmospheric Sci. 37 (8) pp 1700– (1980)
[9] Berger, Springer Series in Statistics, in: Statistical decision theory and Bayesian analysis (1985)
[10] Bernardo, Wiley Series in Probability and Statistics, in: Bayesian theory (2000)
[11] Berner, Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: probability density functions, J. Atmospheric Sci. 64 (1) pp 117– (2007)
[12] Biello, A new multiscale model for the Madden-Julian oscillation, J. Atmospheric Sci. 62 (6) pp 1694– (2005)
[13] Bourlioux, Elementary models with probability distribution function intermittency for passive scalars with a mean gradient, Phys Fluids 14 (2) pp 881– (2002) · Zbl 1184.76067
[14] Branicki, Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters, J. Comput. Phys. (2011) · Zbl 1242.65019
[15] Branstator, Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: phase space tendencies, J. Atmospheric Sci. 62 (6) pp 1792– (2005)
[16] Carnevale, Fluctuation-response relations in systems with chaotic behavior, Phys. Fluids A 3 (9) pp 2247– (1991) · Zbl 0745.58042
[17] Committee on Challenges in Representing Physical Processes in Coupled Atmosphere-Land-Ocean Models, Improving the scientific foundation for atmosphere-land ocean simulations (2005)
[18] Dutrifoy, The dynamics of equatorial long waves: a singular limit with fast variable coefficients, Commun. Math. Set 4 (2) pp 375– (2006) · Zbl 1121.35112
[19] Dutrifoy, A simple justification of the singular limit for equatorial shallow-water dynamics, Comm. Pure Appl. Math. 62 (3) pp 322– (2009) · Zbl 1156.76013
[20] E, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (1) pp 87– (2003) · Zbl 1093.35012
[21] Elliott, Monte Carlo methods for turbulent tracers with long range and fractal random velocity fields, Chaos 7 (1) pp 39– (1997) · Zbl 0953.76528
[22] Elliott, A wavelet Monte Carlo method for turbulent diffusion with many spatial scales, J. Comput. Phys. 113 (1) pp 82– (1994) · Zbl 0853.76058
[23] Engquist, Heterogeneous multiscale methods for stiff ordinary differential equations, Math. Comp. 74 (252) pp 1707– (2005) · Zbl 1081.65075
[24] Epstein, Stochastic dynamic prediction, Tellus 21 (6) pp 739– (1969)
[25] Fatkullin, A computational strategy for multiscale systems with application to Lorenz 96 model. J, Comput. Phys. 200 (2) pp 605– (2004) · Zbl 1058.65065
[26] Franzke, A hidden Markov model perspective on regimes and metastability in atmospheric flows, J. Climate 21 pp 1740– (2008)
[27] Franzke, Systematic metastable regime identification in an AGCM, J. Atmospheric Sci. 66 pp 1997– (2009)
[28] Franzke, Low-order stochastic mode reduction for a prototype atmospheric GCM, J. Atmospheric Sci. 63 (2) pp 457– (2006)
[29] Franzke, The origin of nonlinear signatures of planetary wave dynamics: mean phase space tendencies and contributions from non-gaussianity, J. Atmospheric Sci. 64 pp 3987– (2007)
[30] Gershgorin, Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation, J. Comput. Phys 229 (1) pp 32– (2010) · Zbl 1178.93134
[31] Gershgorin, Test models for improving filtering with model errors through stochastic parameter estimation, J. Comput. Phys 229 (1) pp 1– (2010) · Zbl 1178.93133
[32] Gershgorin, A nonlinear test model for filtering slow-fast systems, Commun. Math. Sci. 6 (3) pp 611– (2008) · Zbl 1152.62065
[33] Gershgorin, Filtering a nonlinear slow-fast system with strong fast forcing, Commun. Math. Sci. 8 (1) pp 67– (2010) · Zbl 1202.62128
[34] Gershgorin, A test model for fluctuation-dissipation theorems with time periodic statistics, Phys. D 239 (17) pp 1741– (2010) · Zbl 1200.37078
[35] Gershgorin, Filtering a statistically exactly solvable test model for turbulent tracers from partial observations, J. Comput. Phys. 230 (4) pp 1602– (2011) · Zbl 1391.76179
[36] Giannakis, Quantifying the predictive skill in long-range forecasting. Part I: Coarse-grained predictions in a simple ocean model, J. Climate
[37] Giannakis, Quantifying the predictive skill in long-range forecasting. Part II: Model error in coarse-grained Markov models with application to ocean-circulation regimes, J. Climate
[38] Giannakis, Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems, Phys. D. (2011)
[39] Grabowski, Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP), J. Atmospheric Sci. 58 pp 978– (2001)
[40] Grabowski, An improved framework for superparameterization, J. Atmospheric Sci. 61 (15) pp 1940– (2004)
[41] Grabowski, CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere, Phys. D 133 pp 171– (1999) · Zbl 1194.86006
[42] Gritsun, Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem, J. Atmospheric Sci. 64 (7) pp 2558– (2007)
[43] Gritsun, Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem, J. Atmospheric Sci. 65 (9) pp 2824– (2008)
[44] Gritsun, Barotropic atmosphere response to small external actions: Theory and numerical experiments, Izv. Atmos. Oceanic Phys. 35 (4) pp 511– (1999)
[45] Hairer, A simple framework to justify linear response theory, Nonlinearity 23 (4) pp 909– (2010) · Zbl 1186.82006
[46] Harlim, Filtering turbulent sparsely observed geophysical flows, Monthly Weather Rev. 138 (4) pp 1050– (2010)
[47] Haven, Quantifying predictability through information theory: small sample estimation in non-Gaussian framework, J. Comput. Phys. 206 (1) pp 334– (2005) · Zbl 1088.62502
[48] American Geophysical Union Monograph Series, in: Ocean modeling in an eddying regime (2008)
[49] Hinze, McGraw-Hill Series in Mechanical Engineering, in: Turbulence: an introduction to its mechanism and theory (1959)
[50] Holland, An impact of subgrid-scale ice-ocean dynamics on sea-ice cover, J. Climate 14 (7) pp 1585– (2001)
[51] Holland, Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters, Nature Geosci. 1 pp 659– (2008)
[52] Horenko, On robust estimation of low-frequency variability trends in discrete Markovian sequences of atmospheric circulation patterns, J. Atmospheric Sci. 66 (7) pp 2059– (2009)
[53] Horenko, Finite element approach to clustering of multidimensional time series, SIAM J. Sci. Comput. 32 (1) pp 62– (2010) · Zbl 1206.62150
[54] Horenko, On clustering of non-stationary meteorological time series, Dyn. Atmos. Oceans 49 (2-3) pp 164– (2010) · Zbl 1206.62150
[55] Horenko, On the identification of nonstationary factor models and their application to atmospheric data analysis, J. Atmospheric Sci. 67 (5) pp 1559– (2010)
[56] Horenko, Nonstationarity in multifactor models of discrete jump processes, memory and application to cloud modeling, J. Atmospheric Sci. 68 (7) pp 1493– (2011)
[57] Jaynes, Information theory and statistical mechanics, Phys. Rev. (2) 106 pp 620– (1957) · Zbl 0084.43701
[58] Joughin, Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica, Geophys. Res. Lett. 37 pp L20502– (2010)
[59] Keating, New methods for estimating poleward eddy heat transport using satellite altimetry, Monthly Weather Rev.
[60] Kerstein, Linear-eddy modeling of turbulent transport. II. Application to shear layer mixing, Combust. Flame 75 pp 397– (1989)
[61] Khairoutdinov, Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes, J. Atmospheric Sci. 62 (7) pp 2136– (2005)
[62] Khouider, A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis, J. Atmospheric Sci. 63 (4) pp 1308– (2006)
[63] Khouider, Equatorial convectively coupled waves in a simple multicloud model, J. Atmospheric Sci. 65 (11) pp 3376– (2008)
[64] Khouider, Climate science, waves, and PDE’s for the tropics, Nonlinearity. (2011)
[65] Khouider, The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization, J. Atmospheric Sci. 68 (2) pp 240– (2011)
[66] Kleeman, Measuring dynamical prediction utility using relative entropy, J. Atmospheric Sci. 59 (13) pp 2057– (2002)
[67] Kleeman, Information theory and dynamical system predictability, Entropy 13 (3) pp 612– (2011) · Zbl 1229.94026
[68] Kleeman, Quantifying predictability in a model with statistical features of the atmosphere, Proc. Natl. Acad. Sci. USA 99 (24) pp 15291– (2002) · Zbl 1063.86003
[69] Klein, Annual review of fluid mechanics 42 pp 249– (2010)
[70] Kullback, On information and sufficiency, Ann. Math. Statistics 22 pp 79– (1951) · Zbl 0042.38403
[71] Laliberte, Winter intensification of the moist branch of the circulation in simulations of 21st century climate, Geophys. Res. Lett. 37 pp L20707– (2010)
[72] Leith, Climate response and fluctuation dissipation, J. Atmospheric Sci. 32 (10) pp 2022– (1975)
[73] Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 pp 130– (1963) · Zbl 1417.37129
[74] Lorenz, A study of the predictability of a 28-variable atmospheric model, Tellus 17 (3) pp 321– (1965)
[75] Lorenz, The predictability of a flow which possesses many scales of motion, Tellus 21 (3) pp 289– (1969)
[76] Lorenz, Proc. Seminar on Predictability pp 1– (1996)
[77] Majda, Random shearing direction models for isotropic turbulent diffusion, J. Statist. Phys. 75 (5-6) pp 1153– (1994) · Zbl 0829.60074
[78] Majda, Mathematics: frontiers and perspectives pp 137– (2000)
[79] Majda, Introduction to PDEs and waves for the atmosphere and ocean (2003) · Zbl 1278.76004
[80] Majda, Multiscale models with moisture and systematic strategies for superparameterization, J. Atmospheric Set 64 (7) pp 2726– (2007)
[81] Majda, High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability, Proc. Natl. Acad. Set USA 107 (2) pp 581– (2010) · Zbl 1205.86025
[82] Majda, CRM Monograph Series, 25, in: Information theory and stochastics for multiscale nonlinear systems (2005)
[83] Majda, A multiscale model for tropical intraseasonal oscillations, Proc. Natl. Acad. Sci. USA 101 (14) pp 4736– (2004) · Zbl 1063.86004
[84] Majda, Normal forms for reduced stochastic climate models, Proc. Natl. Acad. Sci. USA 106 (10) pp 3649– (2009) · Zbl 1202.86011
[85] Majda, Distinct metastable atmospheric regimes despite nearly Gaussian statistics: a paradigm model, Proc. Natl. Acad. Sci. USA 103 (22) pp 8309– (2006) · Zbl 1160.86304
[86] Majda, An applied mathematics perspective on stochastic modelling for climate, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (1875) pp 2429– (2008) · Zbl 1153.86315
[87] Majda, Quantifying uncertainty in climate change science through empirical information theory, Proc. Natl. Acad. Sci. USA 107 (34) pp 14958– (2010)
[88] Majda, Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum, and intermittency, Philos. Trans. R. Soc. Lont. Ser. A Math. Phys. Eng. Sci. (2011) · Zbl 1353.76034
[89] Majda, Improving model fidelity and sensitivity for complex systems through empirical information theory, Proc. Natl. Acad. Sci. USA 108 (31) pp 10044– (2011) · Zbl 1256.94026
[90] Majda, The link between statistical equilibrium fidelity and forecasting skill for complex systems with model error, Proc. Natl. Acad. Sci. USA 108 (31) pp 12599– (2011) · Zbl 1256.86003
[91] Majda, Low-frequency climate response and fluctuation-dissipation theorems: theory and practice. J, Atmospheric Sci. 67 (4) pp 1186– (2010)
[92] Majda, Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, Proc. Natl. Acad. Sci. USA 104 (4) pp 1124– (2007) · Zbl 1135.93378
[93] Majda, Mathematical test models for superparameterization in anisotropic turbulence, Proc. Nat. Acad. Sci. USA 106 (14) pp 5470– (2009) · Zbl 1202.76003
[94] Majda , A. J. Harlim , J. Filtering complex turbulent systems Cambridge University Press Cambridge
[95] Majda, Mathematical strategies for filtering turbulent dynamical systems, Discrete Contin. Dyn. Sys. 27 (2) pp 441– (2010) · Zbl 1191.93135
[96] Majda, A mathematical framework for predictability through relative entropy, Methods Appl. Anal. 9 (3) pp 425– (2002) · Zbl 1084.94010
[97] Majda, Simplified models for turbulent diffusion: theory, numerical modeling, and physical phenomena, Phys. Rep. 314 (4-5) pp 237– (1999)
[98] Majda, Existence and uniqueness of weak solutions for precipitation fronts: a novel hyperbolic free boundary problem in several space variables, Comm. Pure Appl. Math. 63 (10) pp 1351– (2010) · Zbl 1204.35068
[99] Majda, The Madden-Julian oscillation and the multiscale hierarchy of organized convection, UCLA Tropical Meteorology and Climate Newsletter (88)
[100] Majda, The skeleton of tropical intraseasonal oscillations, Proc. Natl. Acad. Sci. USA 16 (21) pp 8417– (2009)
[101] Majda, Nonlinear dynamics and regional variations in the MJO skeleton, J. Atmospheric Set
[102] Majda, Low-dimensional chaotic dynamics versus intrinsic stochastic noise: a paradigm model, Phys. D 199 (3-4) pp 339– (2004) · Zbl 1067.37044
[103] Majda, Systematic strategies for stochastic mode reduction in climate, J. Atmospheric Sci. 60 (14) pp 1705– (2003)
[104] Majda, Non-linear dynamics and statistical theories for basic geophysical flows (2006) · Zbl 1141.86001
[105] Majda, Linear response theory for statistical ensembles in complex systems with time-periodic forcing, Commun. Math. Sci. 8 (1) pp 145– (2010) · Zbl 1201.37109
[106] Majda, New multi-scale models on mesoscales and squall lines, Commun. Math. Sci. 8 (1) pp 113– (2010) · Zbl 1278.86006
[107] Majda, Fundamental limitations of ad hoc linear and quadratic multi-level regression models for physical systems, Discrete Cont. Dyn. Systems · Zbl 1263.62100
[108] Marconi, Fluctuation-dissipation: response theory in statistical physics, Phys. Rep. 461 (4-6) pp 111– (2008)
[109] Moncrieff, Collaborative research at the intersection of weather and climate, WMO Bulletin 56 pp 204– (2007)
[110] Monin, Statistical fluid mechanics: mechanics of turbulence I (1971)
[111] National Research Council Ad Hoc Study Group on Carbon Dioxide and Climate, Carbon dioxide and climate: a scientific assessment. Report of an Ad Hoc Study Group on Carbon Dioxide and Climate, Woods Hole, Mass., July 23-27, 1979, to the Climate Research Board, Assembly of Mathematical and Physical Sciences, National Research Counc (1979)
[112] Neelin, Long tails in deep columns of natural and anthropogenic tropospheric tracers, Geophys. Res. Lett. 37 (2010)
[113] Neelin, Tropical drying trends in global warming models and observations, Proc. Natl. Acad. Sci. USA 103 (16) pp 6110– (2003)
[114] Pauluis, The global atmospheric circulation on moist isentropes, Science 321 (5892) pp 1075– (2008) · Zbl 1226.86004
[115] Pauluis, The global atmospheric circulation in moist isentropic coordinates, J. Climate 23 (11) pp 3077– (2010)
[116] Penland, The optimal growth of tropical sea surface temperature anomalies, J. Climate 8 (8) pp 1999– (1995)
[117] Randall, Breaking the cloud parameterization deadlock, Bull. Amer. Meteor. Soc. 84 (11) pp 547– (2003)
[118] Randall, Climate change 2007: The physical science basis pp 589– (2007)
[119] Smith, The geography of linear baroclinic instability in Earth’s oceans, J. Marine Res. 65 (5) pp 655– (2007)
[120] Townsend, The structure of turbulent shear flow (1956) · Zbl 0070.43002
[121] Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci. 1 (2) pp 385– (2003) · Zbl 1088.60060
[122] Varadhan , S. R. S. Large deviations and applications 1984 · Zbl 0549.60023
[123] Varadhan, Large deviations and applications, Exposition. Math. 3 (3) pp 251– (1985) · Zbl 0567.60030
[124] Visbeck, Specification of eddy transfer coefficients in coarse-resolution ocean circulation models, J. Phys. Oceanogr. 27 (3) pp 381– (1997)
[125] Wang, Stationary statistical properties of Rayleigh-BĂ©nard convection at large Prandtl number, Comm. Pure Appl. Math. 61 (6) pp 789– (2008) · Zbl 1143.35351
[126] Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization, Math. Comp. 79 (269) pp 259– (2010) · Zbl 1197.65211
[127] Wardle, Representation of eddies in primitive equation models by a PV flux. J, Phys. Oceanogr. 30 (10) pp 2481– (2000)
[128] Williams, Weighing the odds. A course in probability and statistics (2001) · Zbl 0984.62001
[129] Xing, New efficient sparse space-time algorithms for superparametrization on mesoscales, Mon. Wea. Rev. 137 pp 4307– (2009)
[130] Yuan, Invariant measures and asymptotic Gaussian bounds for normal forms of stochastic climate model, Chin. Ann. Math. Ser. B 32 (3) pp 343– (2011) · Zbl 1304.86003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.