Cheon, Gi-Sang; Kim, Hana; Shapiro, Louis W. Combinatorics of Riordan arrays with identical \(A\) and \(Z\) sequences. (English) Zbl 1243.05007 Discrete Math. 312, No. 12-13, 2040-2049 (2012). Summary: In theory, Riordan arrays can have any A-sequence and any Z-sequence. For examples of combinatorial interest they tend to be related. Here we look at the case that they are identical or nearly so. We provide a combinatorial interpretation in terms of weighted Łukasiewicz paths and then look at several large classes of examples. Cited in 25 Documents MSC: 05A05 Permutations, words, matrices 05A15 Exact enumeration problems, generating functions Keywords:Riordan array; Łukasiewicz path; Dyck path; consistent Riordan array Software:OEIS PDF BibTeX XML Cite \textit{G.-S. Cheon} et al., Discrete Math. 312, No. 12--13, 2040--2049 (2012; Zbl 1243.05007) Full Text: DOI References: [1] Deutsch, E., Ordered trees with prescribed root degrees, node degrees, and branch lengths, Discrete math., 282, 89-94, (2004) · Zbl 1042.05026 [2] Deutsch, E.; Shapiro, L.W., A survey of the fine numbers, Discrete math., 241, 241-265, (2001) · Zbl 0992.05011 [3] Gessel, I.M., A factorization for formal Laurent series and lattice path enumeration, J. combinatorial theory, series A, 28, 321-337, (1980) [4] Graham, R.; Knuth, D.; Patashnik, O., Concrete mathematics, (1994), Addison-Wesley Pub. Co. [5] He, T.-X.; Sprugnoli, R., Sequence characterization of Riordan arrays, Discrete math., 309, 3962-3974, (2009) · Zbl 1228.05014 [6] Merlini, D.; Rogers, D.G.; Sprugnoli, R.; Verri, M.C., On some alterative characterizations of Riordan arrays, Can. J. math., 49, 301-320, (1997) · Zbl 0886.05013 [7] Merlini, D.; Sprugnoli, R., The relevant prefixes of coloured Motzkin walks: an average case analysis, Theoret. comput. sci., 411, 148-163, (2010) · Zbl 1189.68181 [8] Merlini, D.; Verri, M.C., Generating trees and proper Riordan arrays, Discrete math., 218, 167-183, (2000) · Zbl 0949.05004 [9] Pergola, E.; Pinzani, R.; Rinaldi, S.; Sulanke, R.A., A bijective approach to the area of generalized Motzkin paths, Adv. appl. math., 28, 580-591, (2002) · Zbl 1005.05008 [10] Rogers, D.G., A Schröder triangle: three combinatorial problems, (), 175-196 · Zbl 0368.05004 [11] Shapiro, L.W.; Getu, S.; Woan, W.-J.; Woodson, L., The Riordan group, Discrete appl. math., 34, 229-239, (1991) · Zbl 0754.05010 [12] Shapiro, L.W.; Wang, C.J., A bijection between 3-Motzkin paths and Schröder paths with no peak at odd height, J. integer seq., 12, (2009), Article 09.3.2 · Zbl 1165.05300 [13] Sloane, N.J.A., The on-line encyclopedia of integer sequences · Zbl 1274.11001 [14] Sprugnoli, R., Riordan arrays and combinatorial sums, Discrete math., 132, 267-290, (1994) · Zbl 0814.05003 [15] Stanley, R.P., Enumerative combinatorics, vol. 2, (1997), Cambridge Univ. Press · Zbl 0889.05001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.