×

zbMATH — the first resource for mathematics

Existence of periodic solutions for neutral type cellular neural networks with delays. (English) Zbl 1243.34102
Summary: By using the theory of abstract continuation theorem of \(k\) contractive operator, we study the existence of periodic solutions for neutral type cellular neural networks with delays.

MSC:
34K13 Periodic solutions to functional-differential equations
34K40 Neutral functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Roska, T.; Chua, L.O., Cellular neural networks with nonlinear and delay-type templates, Int. J. circuit theory appl., 20, 469-481, (1992) · Zbl 0775.92011
[2] Zhou, D.; Cao, J., Globally exponential stability conditions for cellular neural networks with time-varying delay, Appl. math. comput., 131, 487-496, (2002) · Zbl 1034.34093
[3] Zhou, D.; Cao, J., Globally exponential stability conditions for cellular neural networks with time-varying delays, Appl. math. comput., 131, 487-496, (2002) · Zbl 1034.34093
[4] Cao, J., New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. lett. A, 307, 136-147, (2003) · Zbl 1006.68107
[5] Zhang, Q.; Wei, X.; Xu, J., On global exponential stability of delayed cellular neural networks with time-varying delays, Appl. math. comput., 162, 679-686, (2005) · Zbl 1114.34337
[6] Liu, Z.; Liao, L., Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. math. anal. appl., 290, 247-262, (2004) · Zbl 1055.34135
[7] Jiang, H.; Teng, Z., A new criterion on the global exponential stability for cellular neural networks with multiple time-varying delays, Phys. lett. A, 338, 461-471, (2005) · Zbl 1136.34338
[8] Li, Y.K.; Zhu, L.F.; Liu, P., Existence and stability of periodic solutions of delayed cellular neural networks, Nonlinear anal.: real world appl., 7, 225-234, (2006) · Zbl 1086.92002
[9] Cao, J.; Wang, J., Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE trans. neural networks, 13, 457-463, (2002)
[10] Li, Y.; Xing, W.Y.; Lu, L.H., Existence and global exponential stability of periodic solution of a class of neural networks with impulses, Chaos, solitons and fractals, 27, 437-445, (2006) · Zbl 1084.68103
[11] Li, Y.; Liu, P., Existence and stability of positive periodic solution for BAM neural networks with delays, Math. comput. model., 40, 757-770, (2004) · Zbl 1197.34125
[12] Zhang, Q.; Wei, X.; Xu, J., Stability analysis for cellular neural networks with variable delays, Chaos, solitons and fractals, 28, 331-336, (2006) · Zbl 1084.34068
[13] Park, Ju H., Global exponential stability of cellular neural networks with variable delays, Appl. math. comput., 183, 1214-1219, (2006) · Zbl 1115.34071
[14] Liu, Z.; Liao, L., Existence and global exponential stability of periodic solutions of cellular neural networks with time-varying delay, J. math. anal. appl., 290, 247-262, (2004) · Zbl 1055.34135
[15] Gui, Z.; Yang, X.S., Stability and existence of periodic solutions of periodic cellular neural networks with time-varying delay, Comput. math. appl., 52, 1657-1670, (2006) · Zbl 1160.34063
[16] Park, Ju H.; Kwon, O.M.; Lee, S.M., State estimation for neural networks of neutral-type with interval time-varying delays, Appl. math. comput., (2008) · Zbl 1166.34331
[17] Park, Ju H.; Kwon, O.M.; Lee, S.M., LMI optimization approach on stability for delayed neural networks of neutral-type, Appl. math. comput., 196, 236-244, (2008) · Zbl 1157.34056
[18] Park, J.H.; Park, C.H.; Kwon, O.M.; Lee, S.M., A new stability criterion for bidirectional associative memory neural networks of neutral-type, Appl. math. comput., 199, 716-722, (2008) · Zbl 1149.34345
[19] Park, J.H.; Kwon, O.M., Design of state estimator for neural networks, Appl. math. comput., (2008) · Zbl 1169.93400
[20] Lee, S.M.; Kwon, O.M.; Park, Ju H., A novel delay-dependent criterion for delayed neural networks of neutral type, Phys. lett. A, 374, 1843-1848, (2010) · Zbl 1236.92007
[21] Mandal, S.; Majee, N.C., Existence of periodic solutions for a class of cohen – grossberg type neural networks with neutral delays, Neurocomputing, 74, 1000-1007, (2011)
[22] Wang, K.; Zhu, Y., Stability of almost periodic solution for a generalized neutral-type neural networks with delays, Neurocomputing, 73, 3300-3307, (2010)
[23] Deimling, K., Nonlinear functional analysis, (1985), Springer Berlin · Zbl 0559.47040
[24] Petryshynand, W.; Yu, Z., Existence theorem for periodic solutions of higher order nonlinear periodic boundary value problems, Nonlinear anal., 6, 9, 943-969, (1982) · Zbl 0525.34015
[25] Liu, Z.; Mao, Y., Existence theorem for periodic solutions of higher order nonlinear differential equations, J. math. anal. appl., 216, 481-490, (1997) · Zbl 0892.34040
[26] G, Z.; Ge, W.; Yang, X., Periodic oscillation for a Hopfield neural networks with neutral delays, Phys. lett. A, 364, 267-273, (2007) · Zbl 1203.34109
[27] Lu, S.; Ge, W., Existence of positive periodic solutions for neutral logarithmic population model with multiple delays, J. comput. appl. math., 166, 371-383, (2004) · Zbl 1061.34053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.