×

Bifurcations analysis and tracking control of an epidemic model with nonlinear incidence rate. (English) Zbl 1243.39013

Summary: A discrete epidemic model with nonlinear incidence rate obtained by the forward Euler method is investigated. The conditions for existence of codimension-1 bifurcations (fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation) are derived by using the center manifold theorem and bifurcation theory. Furthermore, the condition for the occurrence of codimension-2 bifurcation (fold-flip bifurcation) is presented. In order to eliminate the chaos or Neimark-Sacker bifurcation of the discrete epidemic model, a tracking controller is designed. The number of the infectives tends to zero when the number of iterations is gradually increasing, that is, the disease disappears gradually. Finally, numerical simulations not only illustrate the validity of the proposed results, but also display the interesting and complex dynamical behaviors.

MSC:

39A28 Bifurcation theory for difference equations
92D30 Epidemiology
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hui, J.; Zhu, D., Global stability and periodicity on SIS epidemic models with backward bifurcation, Comput. Math. Appl., 50, 1271-1290 (2005) · Zbl 1078.92058
[2] Li, X. Z.; Wang, J.; Ghosh, M., Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination, Appl. Math. Model., 34, 437-450 (2010) · Zbl 1185.34100
[3] Alexander, M. E.; Moghadas, S. M., Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189, 75-96 (2004) · Zbl 1073.92040
[4] Chan, D. M.; Franke, J. E., Multiple extinctions in a discrete competitive system, Nonlinear Anal.: Real World Appl., 2, 75-91 (2001) · Zbl 1014.92038
[5] Kulenovie, M. R.; Nurkanovic, M., Global asymptotic behavior of a two dimensional system of difference equations modeling cooperation, J. Differ. Equ. Appl., 9, 149-159 (2003) · Zbl 1030.39011
[6] Selgrade, J. F.; Roberds, J. H., Period-doubling bifurcations for systems of difference equations and application to models in population biology, Nonlinear Anal.: Theory Methods Appl., 29, 185-199 (1997) · Zbl 0877.39011
[7] David, L. J., A discrete time population control model, Math. Biosci., 15, 231-252 (1972) · Zbl 0245.92015
[8] Castillo, C. C.; Yakubu, A. A., Dispersal disease and life-history evolution, Math. Biosci., 173, 35-53 (2001) · Zbl 1005.92029
[9] Satsuma, J.; Willox, R.; Ramani, A., Extending the SIR epidemic model, Physica A, 336, 369-375 (2004)
[10] Willox, R.; Grammaticos, B.; Carstea, A. S.; Ramani, A., Epidemic dynamics: discrete-time and cellular automaton models, Physica A, 328, 13-22 (2003) · Zbl 1026.92042
[11] Ramani, A.; Carstea, A. S.; Willox, R.; Grammaticos, B., Oscillating epidemics: a discrete-time model, Physica A, 333, 278-292 (2004)
[12] Mendez, V.; Fort, J., Dynamical evolution of discrete epidemic models, Physica A, 284, 309-317 (2000)
[13] D’Innocenzo, A.; Paladini, F.; Renna, L., A numerical investigation of discrete oscillating epidemic models, Physica A, 364, 497-512 (2006) · Zbl 1103.70010
[14] Allen, J. S., Some discrete-time SI, SIR, and SIS epidemic models, Math. Biosci., 124, 83-105 (1994) · Zbl 0807.92022
[15] Li, X. Y.; Wang, W. D., A discrete epidemic model with stage structure, Chaos Solitons Fract., 26, 947-958 (2005) · Zbl 1066.92045
[16] Gao, S. J.; Chen, L. S.; Sun, L. H., Dynamic complexities in a seasonal prevention epidemic model with birth pulses, Chaos Solitons Fract., 26, 1171-1181 (2005) · Zbl 1064.92039
[17] Zhou, Y. C.; Ma, Z. E., A discrete epidemic model for SARS transmission and control in China, Math. Comput. Model., 40, 1491-1506 (2004) · Zbl 1066.92046
[18] Zhang, H.; Chen, L. S.; Nieto, Juan J., A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal.: Real World Appl., 9, 1714-1726 (2008) · Zbl 1154.34394
[19] Blount, S.; Galambosi, A.; Yakowitz, S., Nonlinear and dynamic programming for epidemic intervention, Appl. Math. Comput., 86, 123-136 (1997) · Zbl 0899.92029
[20] Jing, Z. J.; Chang, Y.; Guo, B. L., Bifurcation and chaos in discrete FitzHugh-Nagumo system, Chaos Solitons Fract., 21, 701-720 (2004) · Zbl 1048.37526
[21] Agiza, H. N.; Elabbasy, E. M.; Metwally, H. E., Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal.: Real World Appl., 10, 116-129 (2009) · Zbl 1154.37335
[22] Zhang, Y.; Zhang, Q. L.; Zhao, L. C., Dynamical behaviors and chaos control in a discrete functional response model, Chaos Solitons Fract., 34, 1318-1327 (2007) · Zbl 1142.37382
[23] Jing, Z. J.; Jia, Z. Y.; Wang, R. Q., Chaos behavior in discrete BVP oscillator, Int. J Bifur. Chaos, 12, 619-627 (2002) · Zbl 1069.65141
[24] Li, L.; Sun, G. Q.; Jin, Z., Bifurcation and chaos in an epidemic model with nonlinear incidence rates, Appl. Math. Comput., 216, 1226-1234 (2010) · Zbl 1187.92073
[25] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Field (1983), Springer: Springer New York · Zbl 0515.34001
[26] Kuznetsov, Y., Elements of Applied Bifurcation Theory (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0914.58025
[27] Kuznetsov, Y.; Meijer, H.; Veen, L., The fold-flip bifurcation, Int. J. Bifur. Chaos, 14, 2253-2282 (2004) · Zbl 1077.37515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.